
1

Complete Factorization Of Skew-Polynomial Over Finite
Fields

Saiyue Lyu

Skew-polynomial ring is one of the most classic and earliest examples in non-commutative
algebra, which is first introduced by Noether and Schmeidler (1920) and later well stud-
ied by Ore (1933). The skew-polynomials have been found useful in solving differential
equations, Coding theory and Control theory. This project first gives a review of basic
concepts of skew-polynomial rings and then tries to investigate the complete factorization
of skew-polynomials over finite fields based on Giesbrecht’s paper in 1998.

1. Basic Definitions

Definition 1.1. An endomorphism σ of ring R is a morphism from R to itself.
A σ−derivation δ on R is a R-linear map from R to itself such that the modified Leibniz’s

law is satisfied, i.e. δ(ab) = σ(a)δ(b) + δ(a)b for any a, b ∈ R.

Definition 1.2. Let R be a ring, σ an endomorphism of R and δ a σ-derivation on R. A
skew-polynomial ring R[x;σ, δ] is defined as

R[x;σ, δ] = {
n

∑
i=0
rix

i, ri ∈ R}

with standard addition and multiplication defined such that

xa = σ(a)x + δ(a) ∀a ∈ R

There are two typical cases :
1. If σ = id, the identity endomorphism on R, then R[x; δ] is called differential operator

ring or skew-polynomial ring with derivation type, which is first introduced by Schlessinger.
2. If δ = 0, then R[x;σ] is called skew-polynomial ring with endomorphism type, which

is first introduced by Hilbert.

In this report, we limit R to be a finite field F ≅ Fq, where q = pk is a power of prime
p for some k ∈ N. And we only consider the endomorphism type skew-polynomial R[x;σ]
with δ = 0. Moreover we take the endomorphism to be also an isomorphism, i.e. σ is a field
automorphism on F . Then the multiplication on R[x;σ] is defined as

xa = σ(a)x, ∀a ∈ F

Iterating this rule for n times, we have

axnbxm = aσn(b)xn+m, ∀a ∈ F

Definition 1.3. Let R be a commutative ring with characteristic p, where p is a prime.
The Frobenius endomorphism F is defined such that F (a) = rp for any r ∈ R

2

Let α generate the multiplicative group of F . Since F ≅ Fq is finite, then every nonzero
element of F is a power of α. If σ(α) = αi for some i, then σ maps αj to αij , i.e. σ raises
all elements to the i power, for some i. So for the automorphism σ we have

σ(a) = ap
ξ

, for some ξ ∈ N

which is actually an iterated Frobenius map of F .

Example 1.4. For f = a2x2 + a1x + a0, g = b1x + b0 ∈ F [x;σ], we have the computations:

f + g = a2x2 + (a1 + b1)x + (a0 + b0)
f ⋅ g = (a2x2 + a1x + a0) ⋅ (b1x + b0)

= a2x2 ⋅ b1x + a2x2 ⋅ b0 + a1x ⋅ b1x + a1x ⋅ b0 + a0 ⋅ b1x + a0 ⋅ b0
= a2σ2(b1)x3 + (a2σ2(b0) + a1σ(b1))x2 + (a1σ(b0) + a0b1)x + a0b0

g ⋅ f = (b1x + b0)(a2x2 + a1x + a0)
= σ(a2)b1x3 + (σ(a1)b1 + a2b0)x2 + (σ(a0)b1 + a1b0)x + a0b0

From these computations, we see that f ⋅ g ≠ g ⋅ f , F [x;σ] is indeed non-commutative.

Consider any f, g ∈ F [x;σ], note σ does not affect the power of x, so we have deg(fg)
= deg(gf) = deg(f) + deg(g), which is the same as in F [x], so we can conclude F [x;σ]
is also integral. Note that F [x] is Euclidean, thus a PID (Principle Ideal Domain) and a
UFD (Unique Factorization Domain), but F [x;σ] is not a UFD in general with the below
example introduced by Caruso and Le Borgne.

Example 1.5. Let F = F8 ≅ F2[α], where α is the solution of α3 + α + 1 = 0. The σ is
defined such that σ(a) = a2,∀a ∈ F , then consider the following skew-polynomial (which has
20 different factorizations actually)

f = x5 + x4 + αx3 + α6x2 + α3x + α2

= (x2 + α5x + α) ⋅ (x + α) ⋅ (x + 1) ⋅ (x + 1)
= (x2 + α5x + α) ⋅ (x + α6) ⋅ (x + α2) ⋅ (x + 1)

F [x;σ] is actually a principle left ideal ring with a right Euclidean algorithm (proved
later), so as usual, we have the following definition.

Definition 1.6. A non-zero f ∈ F [x;σ] is irreducible if whenever f = gh for some non-zero
g, h ∈ F [x;σ], then either deg(g) = 0 or deg(h) = 0.

Then any f ∈ F [x;σ] can be written as a product of irreducible skew-polynomials. The
factorization may not be unique as seen in above example and the order of factors may not
be change due to the special multiplication rule. So we consider two factoring problems.

• Complete Factorization. Given any non-constant f ∈ F [x;σ], find irreducible
f1,⋯, fk ∈ F [x;σ] such that f = f1⋯fk.

• Bi-Factorization. Given any non-constant non-zero f ∈ F [x;σ] and a positive inte-
ger d < deg(f), determine if there exists g, h ∈ F [x;σ] such that f = gh and deg h =d.
If so, find such g and h.

3

In commutative case, these two problems are equivalent while in the skew-polynomial
rings, there are not. In this report, we take a close look at Complete Factorization.

The first resultful contribution for algorithms of factoring a skew-polynomial appears
in Giesbrecht’s paper, which uses associate algebra as a key tool. Let K be the maximum
subfield of F fixed by σ ∈ Aut(F) with [K ∶ Fp] = s, i.e. K can be viewed as a vector
space over Fp of dimension s. Since [Fps ∶ Fp] = s, then we have K ≅ Fps ≅ Fp[x]/(gK) for
some irreducible gK ∈ Fp[x] with degree s. And there exists a basis BK = {1, y, y2,⋯, ys−1}
where y ≡ x mod gK . The corresponding iterated Frobenius map σ is of the form that
σ(a) = τ l(a) = apsl for some l < [F ∶K] = t and τ is the only automorphism of F /K fixing K.
By the maximality of K, gcd(t, l) = 1. Similarly for K/Fp, we can also view F ≅K[x]/(hF)
for some irreducible hF ∈K[x] and there exists a basis for F , BF = {1, z, z2,⋯, zt−1} where
z ≡ x mod hF , i.e. we have the following diagram

Fp ≤
´¸¶
s

Fp[x]/(gK) ≅ Fps ≅ K ≤
´¸¶
t

K[x]/(hF) ≅ F

We then view F [x;σ] as an associate K-algebra with basis {hiFxj ,0 ≤ i < t, j ≥ 0}. We
then can describe any input using K, so we consider cost in terms of operations in K.

2. Addition, Multiplication, Division and Modular Equivalence

Definition 2.1.
● For any f, g ∶ R+ → R+, we say if f = Õ(g) and only if there exists a constant c > 0

such that f = O(g(log g)c).
● We define function M ∶ N+ → R+ to be a multiplication time for K[x], if polynomials

in F of degree < n can be multiplicated using at most M(n) operations in K. Harvey and
Vander found in 2019 that M(n) ∈ O(n logn).

● We define function MM ∶ N+ → R+ to be a multiplication time for K[x]n×n, if two
n × n matrices can be multiplicated using at most MM(n) operations in K. Coppersmith
and Winograd found in 1990 that MM(n) ∈ O(n2.376).

Theorem 2.2 (Addition). For any f, g ∈ F [x;σ], f + g takes O(n) operations in F or
O(nt) operations in K, where n = max(deg f , deg g).

Proof. For any f, g ∈ F [x;σ], we can write

f = ∑
0≤i≤n1

aix
i , g = ∑

0≤j≤n2

bix
i where a0,⋯, an1 , b0,⋯, bn2 ∈ F

Then f + g is the same as the standard addition, which takes O(n) operations in F . ∎

There are many different ways to do multiplications, the classical one introduced by
Giesbrecht uses the explicit formula for the coefficients of the product.

Theorem 2.3 (Multiplication). For any f, g ∈ F [x;σ], fg takes O(n1n2M(t)+n2tM(t) log t)
or Õ(n1n2t + n2t2) operations in K, where n1, n2 are the degrees of f, g.

4

Proof. For any f, g ∈ F [x;σ], we can compute their product as

fg = (∑
0≤i≤n1

aix
i) ⋅ (∑

0≤j≤n2

bix
i) =

n1+n2

∑
i=0

(
i

∑
j=0

ajσ
j(bi−j))xi

For any coefficient b, we can use von zur Gathen and Shoup’s algorithm to compute all
conjugates b, τ(b),⋯, τ t−1(a) of any element a in F over K using O(tM(t) log t) operations
in K, so we can compute images of all power of σ in O(n1tM(t) log t). Then we can compute
n1n2 products in F , so in total it takes O(n1n2M(t) + n2tM(t) log t) or Õ(n1n2t + n2t2)
operations in K. ∎

Caruso and Le Borgne pointed out that this can be actually improved to Õ(n1n2t log q ⋅
(log q + tε ⋅ (log q)O(1))) for all ε > 0 where q is the cardinality of K by using fast modular
composition introduced by Kedlaya and Umans in 2008.

They also showed that we can also modify Karatsuba’s algorithm over skew-polynomial
ring if we only compute multiplication of polynomials with degree ≤ t using Giesbrecht’s
algorithm and compute higher degree multiplication by recursion. Here is Karatsuba for
skew-polynomials :

Algorithm 1: KaratsubaSkew

Input: f, g ∈ F [x;σ] with n1 = deg (f), n2 = deg (g)
Output: fg ∈ F [x;σ]
t = [F ∶K];
if max(n1, n2) ≤ t then

return GiesbrechtMultiplication(f, g);
end

d = ⌊max(n1,n2)
2t ⌋;

Rewrite f = f0 + xdtf1 and g = g0 + xdtg1;
h0 = KaratsubaSkew (f0, g0);
h2 = KaratsubaSkew (f1, g1);
h1 = KaratsubaSkew (f0 + f1, g0 + g1) − h0 − h2;
return h0 + xdth1 + x2dth2;

Let f, g ∈ F [x;σ]. Write f = f0 + xdtf1 and g = g0 + xdtg1, where d = ⌊max(n1,n2)
2t ⌋. Note

x2dt lies in the center of F [x;σ], then we can write

fg = h0 + xdth1 + x2dth2

where h0 = f0g0, h1 = f0g1 + f1g0, h2 = f1g1. Then we can get fg by doing 3 multiplications
h0 = f0g0, h2 = f1g1 and (f0 + f1)(g0 + g1) to get h1 = (f0 + f1)(g0 + g1) −h0 −h2. In total we
can get a complexity of around O(n1.58t1.41), where n = max(n1, n2).

Caruso and Le Borgne also introduced two more methods for multiplication. One is to
reduce it to commutative case by applying σi to all coefficients of g to get a deduced Gi,
then fg = ∑n1

i=0 aiGix
i, which takes O(nt2). The other is to use the structure of matrix

(details omitted here), which takes Õ(nMM(t)
t +nt log q +n1+εt ⋅ (log q)o(1)) for all ε > 0. SO

we have the following complexity table :

5

Algorithm for Multiplication Operations in K

Giesbrecht Õ(n1n2t + n2t2)
Improved Giesbrecht Õ(n1n2t log q ⋅ (log q + tε ⋅ (log q)O(1)))

Karatsuba O(n1.58t1.41)
Reduction to Commutative O(nt2)

Matrix Õ(nMM(t)
t + nt log q + n1+εt ⋅ (log q)o(1))

Note that ”Reduction to Commutative” assumes that multiplication in commutative
ring can be done in quasi-linear time. And although ”Matrix” achieves best asymptotical
theoretical complexity, it is inefficient when n < t2 and it is not easy to implement due to a
complex algebraic structure. So it might be better to choose Karatsuba for multiplication.

Theorem 2.4 (Right Division Existence). For any f, g ∈ F [x;σ], there exists q, r ∈
F [x;σ] such that f = qg+r, i.e. F [x;σ] is right Euclidean. Moreover, F [x;σ] is a principal
left ideal with a right Euclidean division algorithm.

Proof. Assume deg (f) = n1 ≥ n2 = deg (g).
The leading term of xn1−n2g is σn1−n2(bn2)xn1−n2xn2 = σn1−n2(bn2)xn1 , then we can

compute the leading term of an1σ
n1−n2(b−1n2

)xn1−n2g, which is an1σ
n1−n2(b−1n2

bn2)xn1 = an1x
n1 .

Note the leading term of f is also an1x
n1 , so the difference f − an1σ

n1−n2(b−1n2
)xn1−n2g

has degree < n1. Therefore just as in the standard division algorithm, we can repeat the
procedure to reduce the degree until it is < n2 or the remaining difference is just 0, this
allows us to find required q, r.

The existence of right division algorithm (described below) ensures the existence of right
Euclidean algorithm, which implies F [x;σ] is a principal left ideal ring. ∎

Note that if σ is surjective, F [x;σ] is also left Euclidean, i.e. for any f, g ∈ F [x;σ],
there exists q, r ∈ F [x;σ] such that f = gq + r.

Here is the right division algorithm for skew-polynomials

Algorithm 2: RightDivisionSkew

Input: f, g ∈ F [x;σ] with n1 = deg (f) ≥ n2 = deg (g)
Output: q, r ∈ F [x;σ] such that f = qg + r with deg (r) < deg (g)
t = [F ∶K];
f (n1) = f ;

h(n1) = an1σ
n1−n2(b−1n2

)xn1−n2 ;
for n1 ≥ i ≥ n2 do

āi = Coefficient (xi, f (i));
h(i) = āiσi−n2(b−1n2

)xi−n2 ;

f (i−1) = f (i) − h(i)g;

end
q = hn1 +⋯ + hn2 ;

r = f (n2−1);
return (q, r);

Note that to avoid notation of fraction, the algorithm uses σn1−n2(b−1n2
) instead of

1
σn1−n2(bn2)

since they are equal as σ is an automorphism.

6

Example 2.5. Let F = F25 ≅ F2[α]/(α5 +α+a), where α is a primitive element of K. The
σ is defined such that σ(a) = a2,∀a ∈ F . Consider

f = x3 + α19x2 + α17x + α, g = x − α7

Using above algorithm, we can find that

q = x2 + α4x + α4, r = α5

I.e. f = (x2 + α4x + α4)g + α5

Theorem 2.6 (Right Division Cost). For any f, g ∈ F [x;σ] with n1 ≥ n2, perform right
division to find q, r takes O(n2(n1 − n2)M(t) + n2tM(t) log t) or Õ(n2(n1 − n2)t + n2t2)
operations in K.

Proof. Computing the conjugates takes O(n2tM(t) log t) operations in K. At each itera-

tion, computing f (i−1) takes n2 operations, there are ≤ n1 − n2 iterations in total. So right
division takes O(n2(n1 − n2)M(t) + n2tM(t) log t) operations in K. ∎

Caruso and Le Borgne uses a different algorithm to compute the right division which uses
the Newton iteration and reciprocal polynomials. Their algorithm takes Õ(n1t2) operations
in K but it involves approximation in the skew-power series ring.

Just as in commutative ring, we then can define modular equivalence once we have
division.

Definition 2.7. For any f, g ∈ F [x;σ] with n1 ≥ n2, we say g divides f on the right if right
division algorithm finds r = 0.

Definition 2.8 (Modular Equivalence). For any f1, f2, g ∈ F [x;σ], we say f1 ≡ f2
mod g is and only if there exists q ∈ F [x;σ] such that f1 − f2 = qg.

Theorem 2.9. Modular equivalence defined above is an equivalence relation in F [x;σ].

Proof. We check relexivity, symmetricity, transitivity in F [x;σ].
● it is clear f ≡ f mod g.
● if f1 ≡ f2 mod g, then f1 − f2 = qg, then f2 − f1 = (−q)g, thus f2 ≡ f1 mod g.
● if f1 ≡ f2 mod g and f2 ≡ f3 mod g, then f1 − f2 = q1g and f2 − f3 = q2g, we add these

together to get f1 − f3 = (q1 + q2)g where q1 + q2 ∈ F [x;σ], then f1 ≡ f3 mod g. ∎

We have seen that factorization of skew-polynomials is not unique in general. With
modular equivalence, we then can consider how two factorizations as a product of irreducible
factors are related. This is the main structure theorem on complete factorization in F [x;σ]
proved by Ore in 1933.

Theorem 2.10 (Ore). If f ∈ F [x;σ] achieves two different complete factorizations, i.e.

f = f1⋯fm1 = g1⋯gm2

Then m1 =m2 and there exists a permutation π of {1,⋯,m1} such that for all 1 ≤ i ≤m1,
deg (fi) = deg (gπ(i)).

7

A more general version of the above theorem saying that fi is similar to gπ(i) instead
of deg (fi) = deg (gπ(i)). ”Similar” is also an equivalence relation defined as : f and g
are similar if there exists p, q ∈ F [x;σ] such that gcrd(f, q) = 1 = gcld(g, p) and pf = gq.
This definition is based on gcrd (the greatest common right divisor) and gcld (the greatest
common left divisor), which will be discussed later.

Example 2.11. Back to Example 1.5 with same F ,

f = x5 + x4 + αx3 + α6x2 + α3x + α2

= (x2 + α5x + α) ⋅ (x + α) ⋅ (x + 1) ⋅ (x + 1)
= (x2 + α5x + α) ⋅ (x + α6) ⋅ (x + α2) ⋅ (x + 1)

If we write up all its 20 factorizations, we will find that all degree-1 polynomials in thoes
factorizations are similar to each other and all degree-1 polynomials in thoes factorizations
are similar to each other, which gives us two similar class :

S1 = {x + 1, x + α,x + α2, x + α3, x + α4, x + α5, x + α6}
S2 = {x2 + α6x + α3, x2 + α5x + α6, x2 + α5x + α,x2 + α2x + α4, x2 + α2x + 1, x2 + x + α2, x2 + x + α}

3. Common Divisors, Multiples and Decomposition

Just as in the commutative case, the existence of right division also leads to the existence
of right Euclidean algorithm for skew-polynomial ring, then we can define the greatest
common right divisor and the least common left multiples.

Definition 3.1 (GCRD). The greatest common right divisor of two polynomials f, g ∈
F [x;σ], denoted as gcrd (f, g), is the monic polynomial h = gcrd (f, g) ∈ F [x;σ] of the
highest degree such that h divides f and g, i.e. there exists f1, g1 ∈ F [x;σ] with f = f1h and
g = g1h. For any h′ ∈ F [x;σ] such that h′ also divides f and g, we have h′ divides h.

With gcrd defined, here is the right Euclidean algorithm for skew-polynomials :

Algorithm 3: RightEuclideanSkew

Input: f, g ∈ F [x;σ] with n1 = deg (f) ≤ n2 = deg (g)
Output: gcrd (f, g)
f (1) = f ;

f (2) = g;
for i ≥ 3 do

q(i) = RightDivisionSkew (f (i−2), f (i−1)).q;
r(i) = RightDivisionSkew (f (i−2), f (i−1)).r;
f (i) = r(i);

STOP when f (j) = 0 for some j ≥ 3;

end

a = lc (f (j−1));
return a−1f (j−1);

RightEuclideanSkew is almost the same as in the standard version. Note a−1 makes sure
h is monic.

8

Theorem 3.2 (Uniqueness of gcrd). For any f, g ∈ F [x;σ], there exists a unique gcrd
(f, g).

Proof. The uniqueness of gcrd is in fact preserved by right Euclidean algorithm. Consider
h′ satisfying the conditions. Then h′ divides and h divides h′. I.e. h′ = sh and then
h = th′ = tsh for some s, t ∈ F [x;σ].This forces degree of ts is 1, thus h′ = h, which proves
the uniqueness. ∎

Now we can consider the skew-polynomial version of Extended Euclidean Algorithm, it
looks almost same as the standard version.

Algorithm 4: ExtendedEuclideanSkew

Input: f, g ∈ F [x;σ] with n1 = deg (f) ≤ n2 = deg (g)
Output: s, t ∈ F [x;σ] such that sf + tg = gcrd (f, g)
r(1) = f ;

r(2) = g;
for i ≥ 3 do

q(i) = RightDivisionSkew (r(i−2), r(i−1)).q;
r(i) = RightDivisionSkew (r(i−2), r(i−1)).r;

Q(i) = [1

1 −q(i)];

R(i) = Q(i) [r
(i−2)

r(i−1)
] = [r

(i−1)

r(i)
];

STOP when r(j) = 0 for some j ≥ 3
end

s = R(j−1)11 ;

t = R(j−1)12 ;

h = r(j−1);
return s, t, h;

Similarly we can define the least common left multiple.

Definition 3.3 (LCLM). The least common left multiple of two polynomials f, g ∈ F [x;σ],
denoted as lclm (f, g), is the monic polynomial h = lclm (f, g) ∈ F [x;σ] of the lowest degree
such that f and g divides h , i.e. there exists f1, g1 ∈ F [x;σ] with h = f1f and h = g1g. For
any h′ ∈ F [x;σ] such that f and g also divides h′, we have h divides h′. Similarly, LCLM
is unique.

Note we can find the LCLM also via algorithm 4. Note that s(j)f + t(j)g = r(j) = 0, we
know s(j)f = −t(j)g is a common multiple of f and g. Also with degree restriction proved
by Ore (1933), it forces that lclm (f, g) = s(j)f = −t(j)g.

Example 3.4. Use same F as the Example 2.5.
Let f = x3 + α23x2 + α23x + α8 and g = x3 + α28x2 + α27x + α13. We compute

9

f = 1 ⋅ g + (α25x2 + α2x + α10)
g = (α12x + α14)(α25x2 + α2x + α10) + (α30x + α)

α25x2 + α2x + α10 = (α27x + α9)(α30x + α) + 0

gcrd (f, g) = a−30(α30 + α) = x + α2

lclm (f, g) = (α20x2 + α19x + α12)(x3 + α23x2 + α23x + α8) = α20x5 + α20

Theorem 3.5. For any f, g ∈ F [x;σ] with n1 = deg (f) ≤ n2 = deg (g), computing gcrd
(f, g) and lclm (f, g) takes O(n21M(t)t log t) or Õ(n21t2) operations in K.

Giesbrecht gave the result in his paper in 1998 and Caruso and Le Borgne got a result of
Õ(SM(n1, t)) in 2015 using the FastExtendedRGCD described as Theorem 11.5 in Modern
Computer Algebra by Von Zur Gathen and Gerhard (2003).

GCRD and LCLM are also related to the algebraic structure of F [x;σ]. Since F [x;σ] is
a principal left ideal ring by Theorem 2.4, each left ideal of it is generated by one polynomial
in F [x;σ]. We have some similar properties as in the commutative case.

Theorem 3.6. If F [x;σ]f and F [x;σ]g are two left ideals generated by f, g ∈ F [x;σ], then
● the left ideal F [x;σ] gcrd (f, g) = F [x;σ]f + F [x;σ]g;
● F [x;σ]f ∩ F [x;σ]g is also a left ideal generated by lclm (f, g).

Another important operation is decomposition, a polynomial can be decomposed with
respect to LCLM.

Definition 3.7. Just as in commutative cases, we can also define primeness.
● Two polynomials f, g ∈ F [x;σ] are co-prime if gcrd (f, g) =1.
● f1,⋯, fl ∈ F [x;σ] are mutually co-prime if

gcrd (fi, lclm (f1,⋯, fi−1, fi+1,⋯, fl)) = 1, ∀1 ≤ i ≤ l

Definition 3.8.
● An LCLM-decomposition of f ∈ F [x;σ] is a list (f1,⋯, fl) ∈ F [x;σ]l of mutually

co-prime polynomials such that f = lclm (f1,⋯, fl).
● If f1,⋯, fl are all irreducible, then f is said to be completely irreducible.
● f ∈ F [x;σ] is LCLM-indecomposable if f admits no non-trivial LCLM-decompositions.

Ore (1933) gave the result prove the uniqueness of polynomial decomposition in gener-
alized skew-polynomial ring.

Theorem 3.9 (Ore). Let f ∈ F [x;σ] be monic and achieves an LCLM-decomposition
(f1,⋯, fl), where f1,⋯, fl are LCLM-indecomposable, then

● if f = lclm (g1,⋯, gm), where g1,⋯, gm are LCLM-indecomposable and mutually co-
prime, then l = m and there exists a permutation π of {1,⋯, l} such that for all 1 ≤ i ≤ l,
deg (fi) = deg (gπ(i)) (fi is similar to gi).

● if fi = fi,1⋯fi,si ,∀1 ≤ i ≤ l, where each fi,j is irreducible. If f = h1⋯hk, where h1,⋯, hk
are irreducible, then there exists a bijection π ∶ {1,⋯, k} → {(i, j)} such that for all 1 ≤ t ≤ k,
deg (ht) = deg (fπ(t)).

10

With all of the above operations and algebraic construction, we now can consider the
complete factorization problem.

4. Complete Factorizations

For simiplicity, denote F [x;σ] as S. For any non-constant f ∈ S, we want to achieve
a complete factorization of f . Giesbrecht(1998) used associate algebra as a key tool to
approach a general result.

Definition 4.1. An associate algebra A over K is a K-vector space with compatible oper-
ations of addition and multiplication, under which A is a ring.

Definition 4.2. The idealizer of Sf is the largest subalgebra of S in which Sf is a two-sided
ideal. Such an idealizer is given by

I(Sf) = {u ∈ S ∣ fu ≡ 0 mod f}

Definition 4.3. The eigenring E(Sf) of Sf is defined as the quotient E(Sf) = I(Sf)/Sf ,
computing the endomorphisms of Sf . It is a finite K-algebra. If deg (f) = n, then

E(Sf) ≅ A = {u ∈ I(Sf) ∣deg u < n} = {u ∈ S ∣ fu ≡ 0 mod f, deg u < n}

where A is a K-algebra under addition in S and multiplication in S reduced modulo f .

Giesbrecht(1998) used a property of E(Sf) that it is a field if and only if f is irreducible
to reduct the complete factorization problem to computing non-zero zero divisors in E(Sf).

Theorem 4.4 (McDonald 1974). The center C of S satisfies C = K[xt;σ] ⊂ S. In
particular, C is a commutative unique factorization domain.

Proof. F [xt] is the subset of S commuting with hF defined in section 1.
K[x] is the subset of S commuting with x.
S is a K-algebra generated by hF and x, and K[xt] = F [xt] ∩K[x] is the center of S.
Then C =K[y], where y = xt, which is also a unique factorization domain. ∎

Note that any f̂ ∈ K[y] will generate a two-sided ideal S f̂ , and the two-sided ideals in
S are just exactly of the form S(f̂xl) for some f̂ ∈ K[y] and s ∈ N. Then we consider the
maximal non-zero two-sided ideals in S, which are Sx and Sû, where û ≠ y is irreducible
y-polynomial in K[y].

Definition 4.5. The bound of the left ideal Sf is the largest two-sided ideal O it contains.

Definition 4.6. The minimal central left multiple ĝ ∈ K[y] of f is a left multiple of f of
the minimal degree.

Theorem 4.7. If gcrd (f, x) = 1, then O = S ĝ. In general, if f = lclm (g, xl) for some
l ≥ 0 and some g ∈ S co-prime with x and with minimal central left multiple ĝ ∈K[y], then
O = S ⋅ ĝxs.

11

Definition 4.8.
● An algebra A is simple if {0} and A are the only two-sided ideals of it.
● An algebra is semi-simple if it is a direct sum of simple algebras.

Theorem 4.9 (Lang 1984). Let A be a finite simple algebra of dimension d over K and
L be a left ideal in A.

● A is isomorphic to Em×m, where E is the center of A and [E ∶K] = r, d =m2r.
● There exists minimal left ideals L1,⋯, Lm of A such that A = L1 ⊕⋯ ⊕ Lm, each Li

has dimension rm as a K-vector space.
● Let L = L1⊕⋯⊕Ll for some l ≤m, then there exists maximal left ideals M1,⋯,Mm of

A and k ≤m such that L =M1∩⋯∩Mk and M1∩⋯∩Mm = {0}, also Mi+(M1∩⋯∩Mi−1∩
Mi+1 ∩⋯ ∩Mm) = A. Each maximal left ideal has dimension d − rm as a K-vector space.

Consider the K−algebra A = S/Sû, then it is a simple algebra and a left principle ideal.

Theorem 4.10. Left ideals of A are closed under GCRD and each left ideal J in A is
generated by some unique g + Sû, g ∈ S is monic of minimal degree.

Proof. Suppose g1 + Sû and g2 + Sû are in some left ideal J of A, g1, g1 ∈ A.
By Extended Euclidean algotrihm, we can find h1, h2 ∈ S such that

h1g1 + h2g2 = gcrd (g1, g1)
(h1 + Sû)(g1 + Sû) + (h2 + Sû)(g2 + Sû) = gcrd (g1, g2) + Sû ∈ J

Note that gcrd (g, û)+Sû ∈ J and g has minimal degree, then g is a right factor of û. ∎

Definition 4.11. Such g determined in Theorem 4.11 is called the minimal modular gen-
eratir of J .

Based on above construction, Giesbrecht (1998) proved a property showing the rela-
tionship between left ideal in A and left ideals in S generated by their minimal modular
generators and characterizes the LCLM-decompositions of f ∈ S, where the minimal central
left multiples of f are irreducible as polynomials in y.

Theorem 4.12. Let J1, J2 be non-zero left ideals in A with minimal modular generators
g1, g2 ∈ S, then

● the left ideal J3 = J1∩J2 in A has minimal generator g3 = lclm (g1, g2) when J3 ≠ {0}.
If J3 = {0}, then û = lclm (g1, g2).

● the left ideal J4 = J1 + J2 in A has minimal modular generator g4 = gcrd (g1, g2).

Theorem 4.13 (Giesbrecht 1998). For f ∈ S, the eigenring E(Sf) is a finite field if
and only if f is irreducible in S.

Now with Theorem 4.13, we can reduce the complete factorization problem to the prob-
lem of determining if a finite dimensional associative algebra A over a finite field has any
non-zero zero divisors. This gives consequence of the following corollary showing that left
zero divisors in A is isomorphic to E(Sf), which can be easily proved by contradiction.

Theorem 4.14. For f ∈ S, if u, v ∈ A ∖ {0} with uv ≡ 0 mod f , then gcrd (f, u) ≠ 1.

12

Then we have the algorithm for complete factorization of skew-polynomial, which is
introduced by Giesbrecht in 1998 :

Algorithm 5: CompleteFactorizationSkew

Input: f ∈ F [x;σ] with n = deg (f)
Output: a list of f1,⋯, fk ∈ F [x;σ] irreducible such that f = f1⋯fk
BA = FindBasis (A);
if (A is a field) then

return f ;
else

u = nonzero left divisor of A;
h = RightEuclideanSkew (f, u);
g = RightDIvisionSkew (f, h).q;

return (CompleteFactorizationSkew (g), CompleteFactorizationSkew (h));

end

There are three subproblems in algorithm 5, one is to find the basis of A, one other is
to determine whether A is a field, another is to find a zero divisor (if A is not a field). The
subproblem of finding basis can be done by the following algorithm :

Algorithm 6: FindBasis

Input: The simple K-algebra A constructed previously
Output: A basis BA of A
Compute W = {g ∈ S ∣ deg (g) < n};
Compute a K-linear map T ∶W →W (in matrix form) s.t. T (a) = b ≡ fa mod f ;
N = NullSpace (T);
return basis of N ;

Theorem 4.15. The Findbasis algorithm takes O(n3tM(t) + n2t2M(t) log t +MM(nt))
operations in K if we Giesbrecht Multiplication algorithm, and O(n2.58t2.41 +MM(nt))
operations in K if we use KaratsubaSkew (Algorithm 1).

Proof. Note W is a nt-dimensional K-vector space isomorphic to S/Sf ,
the basis of W is easily seen to be (hF determined in section 1)

{hiFxj ∣0 ≤ i < t,0 ≤ j < n}

Thus A ≅ NullSpace (T).
So we need to compute each fhiFx

j mod f , which takes O(n3tM(t) + n2t2M(t) log t)
by Theorem 2.3. Computing the null space will take O(MM(nt)).

It can improved to O(n2.58t2.41) if we use KaratsubaSkew. ∎

The subproblem to determine whetherA is a field is solved by Ronyai (1987), who proved
that it can be reduced to factoring polynomials in Fp[x] of degree (nst)O(1) ([f ∶ Fp] = st
in section 1) with (nt log q)O(1) operations in K. Factoring in Fp[x] can be solved by a
faster Las Vegas type probabilistic algorithm in O(ntχ +MM(nt) +M(nt) log(nt) log q)
operations in K, where χ operations in K are required to multiply twp elements of A.
Then after we have determined A is not a field, it takes O(n3tM(t) + n2t2M(t) log t +
MM(nt)+M(nt) log(nt) log q) operations to find a zero divisor in A. This can be improved

to O(n2.58t2.41 +MM(nt) +M(nt) log(nt) log q) if Karatsuba is used for multiplications.

13

Theorem 4.16 (Complete Factorization Cost). For any f ∈ S with degree n, Com-
pleteFactorizationSkew finds a complete factorization of f using a Las Vegas type algorithm
with O(n4tM(t) + n3t2M(t) log t + nMM(nt) + nM(nt) log(nt) log q) operations in K if

using classical multiplication algorithm or O(n3.58t3.41 + nMM(nt) + nM(nt) log(nt) log q)
operations in K if using Karatsuba for multiplication.

5. Conclusion and Further Works

In non-commutative cases, factoring can be very difficult. But we can try to use the
algebraic structure trying to reduce it to the commutative cases. The first significant result
is due to Giesbrecht (1998), who used associate algebra reducing the numerical factoring
problem to a algebraic problem in the commutative case. Caruso and Le Borgne (2015)
developed a faster algorithm using Azumaya algebras, and parts of their improvement on
basic operations have been mentioned in section 2 and 3. The total average cost of their
faster algorithm for factoring a skew-polynomial of degree n is

Õ(nt3 log q + n logq +n1+ε(log q)1+o(1)) + F (n,K)

where F (n,K) is the cost of factoring a commutative polynomial of degree n over the
finite field K.

The Bi-Factorization with two-sided ideals problem can also be solved using the same
technique involving associate algebra with a probabilistic algorithm in
O(n4tM(t) + n3t2M(t) log t + nMM(nt) + nM(nt) log(nt) log q) operations in K, details
are not covered in this short report.

Many probabilistic analysis are not covered in this report, further problems to work
on about skew-polynomials can be that the probability of a skew-polynomial to be irre-
ducible, the probability of a skew-polynomial to be square free and the probability of a
skew-polynomial to be smooth.

REFERENCES 14

References

[1] Oystein Ore. Theory of non-commutative polynomials. Ann. of Math. (2) 34 (1933),
no. 3, 480–508. MR 1503119

[2] Mark Giesbrecht. Factoring in skew-polynomial rings over finite fields. J. Symbolic
Comput. 26 (1998), no. 4, 463–486. MR 1646671 (99i:16053)

[3] Xavier Caruso and Jérémy Le Borgne. A new faster algorithm for factoring skew
polynomials over finite fields. J. Symbolic Comput. 79 (2017), no.2, 411-443.

[4] Joachim Von Zur Gathen and Jurgen Gerhard. Modern computer algebra, 2ed. Cam-
bridge University Press, New York, NY, USA, 2003.

[5] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any char-
acteristic. Foundations of Computer Science, IEEE Annual Symposium on 0 (2008),
146–155.

[6] Travis Baumbaugh. Results on Common Left/Right Divisors of Skew Polynomials.
Master Thesis (2016)

[7] B. McDonald. Finite RIngs with Identity. Marcel Dekker, Inc. (New York), 1974.

[8] L. Ronyai. Simple algebra are difficult. 19th ACM Symp. on Theory of Comp., pp.
398-408, New York, 1987.

