Faster Algorithms for Sparse Decomposition and Sparse Series Solution to Differential Equations

4/29/22

Saiyue Lyu
Master of Mathematics in Computer Science Thesis Presentation
Supervisors : Mark Giesbrecht, Arne Storjohann

What are Sparse Polynomials?

- Polynomials with relatively few nonzero terms compared to their degrees,
e.g., $f=3 x^{100}+5 x^{40}+x^{2}$.
- Given a sparse polynomial $f=3 x^{100}+5 x^{40}+x^{2}$:

$$
\begin{array}{llll}
f=3 x^{100}+5 x^{40}+x^{2} & \rightarrow & \tau(f)=3, & \text { the sparsity of } f ; \\
f=3 x^{100}+5 x^{40}+x^{2} & \rightarrow & 100,40,2, & \text { the exponents of } f ; \\
f=3 x^{100}+5 x^{40}+x^{2} & \rightarrow & x^{100}, x^{40}, x^{2}, & \text { the supports of } f .
\end{array}
$$

- The sparse representation of f : a set of coefficients and exponents :

$$
\{(3,100),(5,40),(1,2)\},
$$

has size $O(\tau(f) \log n)$, where n is the degree of f.

Why Sparse Polynomials?

- Very common in computing systems in practice.
- Degree can be exponentially larger than the bit length of the representation.
- Some efficient algorithm for dense polynomials can take exponential operations when change to sparse case.
- Computing with sparse polynomials can be hard!
- Some problems are unknown to be NP or NP-complete, e.g., sparse polynomial divisibility.

Some problems are NP-hard, e.g., gcd of sparse polynomials.
Polynomial Perfect Power Problem can be tackled:)

This Presentation

Solve the Polynomial Perfect Power Problem in dense setting

Solve the Polynomial Perfect Power Problem in sparse setting

Solve Sparse Polynomial Decomposition inspired by the Polynomial Perfect Power Problem

Generalize the Polynomial Perfect Power Problem to Differential Equations

Solve the Polynomial Perfect Power Problem in dense setting

Solve the Polynomial Perfect Power Problem in sparse setting

Solve Sparse Polynomial Decomposition inspired by the Polynomial Perfect Power Problem

Polynomial Perfect Power Problem

Let F be any finite field. Given $f=\sum_{i=0}^{n} f_{i} x^{i} \in F[x]$ with $\operatorname{deg}(f)=$ $n, f_{n} \neq 0$, suppose that $n=r s$ for some $r, s \in \mathbb{N}$, determine whether there exists $h \in F[x]$ with $\operatorname{deg}(h)=s$ such that $f=h^{r}$.

- $n=r s$,
- S,
- r,
- $\left[x^{k}\right] f=f_{k}$,
- $\left[x^{k}\right] h=h_{k}$,
the degree of the input f;
the degree of the output h;
the desired perfect power;
the kth coefficient of f;
the kth coefficient of h;

In the dense setting

$$
f=h^{r}
$$

A private observation by Koiran(2011)

$$
\begin{gathered}
{\left[x^{k}\right]\left(f^{\prime} h\right)=\sum_{i=0}^{k}(k+1-i) f_{k+1-i} h_{i}=r f h^{\prime}} \\
\left.\qquad \square r f_{0} k h_{k}=\sum_{i=0}^{k-1}(k-i-r i) f_{k-i} h_{i}\right]\left(r f h^{\prime}\right)=\sum_{i=0}^{k} r(i+1) f_{k-i} h_{i+1} \\
\operatorname{char}(F) \text { does not divide } r \\
\text { the "tame" case } \quad \text { reduced to } \text { the "wild" case }(F) \text { divides } r
\end{gathered}
$$

$$
h_{k}=\frac{1}{\sqrt{f_{0}} k} \sum_{i=0}^{k-1}(k-i-r i) f_{k-i} h_{i} \quad h_{s-k}=\frac{1}{\sqrt[f_{n} k]{k}} \sum_{i=0}^{k-1}(k-i-r i) f_{n-k+i} h_{s-i}
$$

In the dense setting
 $$
f=h^{r}
$$

A Combinatorial Proof
 Section 3.1.3

$$
r f_{0} k h_{k}=\sum_{i=0}^{k-1}(k-i-r i) f_{k-i} h_{i}
$$

$\operatorname{char}(F)$ does not divide r

$\operatorname{char}(F)$ divides r
the "tame" case, reduced to the "wild" case

$$
h_{k}=\frac{1}{\sqrt{f_{0} k}} \sum_{i=0}^{k-1}(k-i-r i) f_{k-i} h_{i} \quad h_{s-k}=\frac{1}{r \mid f_{n} k} \sum_{i=0}^{k-1}(k-i-r i) f_{n-k+i} h_{s-i}
$$

Solve the "Wild" Case

Following von zur Gathen (1990),

- the "tame" case : $\operatorname{char}(F)$ does not divide r, i.e., $r \neq 0$
- the "wild" case : char (F) divides r
- Say char $(F)=p, r=p^{\alpha} \cdot q$, for some integer α and $\operatorname{gcd}(p, q)=1$.
- Recall properties for $a, b, c \in F, \alpha \geq 1$, we have :

$$
(a+b)^{p^{\alpha}}=a^{p^{\alpha}}+b^{p^{\alpha}}, \quad(a+b+c)^{p}=a^{p}+b^{p}+c^{p}
$$

- Then $f=h^{r}=\left(h_{0}+h_{1} x+\cdots h_{s} x^{s}\right)^{p^{\alpha} \cdot q}$

$$
\begin{aligned}
& =\left(h_{0}^{p^{\alpha}}+h_{1}^{p^{\alpha}} x^{1 \cdot p^{\alpha}}+\cdots+h_{s}^{p^{\alpha}} x^{s \cdot p^{\alpha}}\right)^{q} \\
& =\left(\widetilde{h_{0}}+\widetilde{h_{1}} x^{1 \cdot p^{\alpha}}+\cdots+\widetilde{h_{s}} x^{s \cdot p^{\alpha}}\right)^{q}=\widetilde{h}^{q}, \quad p \text { does not divide } q
\end{aligned}
$$

" The "wild" case can be reduced to the "tame" case.

Can we directly move to the sparse setting?

$$
\begin{aligned}
h_{k} & =\frac{1}{r f_{0} k} \sum_{i=0}^{k-1}(k-i-r i) f_{k-i} h_{i} \\
h_{s-k} & =\frac{1}{r f_{n} k} \sum_{i=0}^{k-1}(k-i-r i) f_{n-k+i} h_{s-i}
\end{aligned} \quad O\left(s^{2}\right)
$$

- Need to compute for each k;
- Cost in terms of degree instead of sparsity;
- How to find the next nonzero exponent?

Solve the Polynomial Perfect Power Problem in dense setting

Solve the Polynomial Perfect Power Problem in sparse setting

Solve Sparse Polynomial Decomposition inspired by the Polynomial Perfect Power Problem

\ominus

Sparse Polynomial Perfect Power Problem

Let F be any finite field. Given sparse $f=\sum_{i=0}^{n} f_{i} x^{i} \in F[x]$ with $\operatorname{deg}(f)=n, f_{n} \neq 0$, suppose that $n=r s$ for some $r, s \in \mathbb{N}$, determine whether there exists $h \in F[x]$ with $\operatorname{deg}(h)=s$ such that $f=h^{r}$, if so, find h in a manner whose costs is polynomial $\operatorname{logn}, \tau(f), \tau(h)$.

- $\tau(f)$, the sparsity of f;
- $\tau(h)$, the sparsity of h;
- Polynomial time in input sparsity and output sparsity.

Some Background

- With previous work by Erdös(1949), Schinzel(1987) and Zannier(2007,2008,2009), we can assume that if f is sparse, then h is also sparse.
- Giesbrecht and Roche(2008,2011) presented an algorithm using kind of Newton iteration in Poly (logn, $\tau(f), \tau(h)$).
- This thesis will give a faster algorithm.

Using the modular trick

- Suppose we have computed h_{0}, \cdots, h_{k-1}, define :

$$
\breve{h}=\sum_{i=0}^{k-1} h_{i} x^{i}, \quad \hat{h}=\sum_{i=k-1}^{S} h_{i} x^{i-(k+1)} ;
$$

- Then $h=\check{h}+h_{k} x^{k}+\hat{h} x^{k+1}$.
- Have

$$
\begin{aligned}
0 & =f^{\prime} h-r f h^{\prime} \\
& \equiv f^{\prime} \check{h}-r f \breve{h}^{\prime}-r k f h_{k} x^{k-1} \bmod x^{k} \\
& \equiv f^{\prime} \check{h}-r f h^{\prime}-r k f_{0} h_{k} x^{k-1} \bmod x^{k} \\
& \equiv R x^{k-1} \quad \bmod x^{k}
\end{aligned}
$$

- $R x^{k-1}$ is the residual or error of the current step, this is a "Newton-like" method;
- When $f_{0} \neq 0$, we can have $h_{k}=R /\left(r f_{0} k\right)$.

A Fast Algorithm

```
Algorithm 3: SparsePerfectPowerNonzeroConstAttempt
    Input: sparse polynomial \(f \in \mathrm{~F}[x]\) of degree \(n\) s.t. \(f_{0} \neq 0\) and integer \(s, r \in \mathbb{Z}\) s.t.
                    \(n=r s\)
    Output: sparse polynomial \(h \in \mathrm{~F}[x]\) such that \(f=h^{r}\)
1 \(h_{0}=f_{0}^{1 / r}\);
\(2 h=h_{0}\);
3 \(k=1\);
4 while degree \((h)<s\) do
\begin{tabular}{l|l}
\(\mathbf{5}\) & res \(=f^{\prime} h-r f h^{\prime} ;\) \\
\cline { 2 - 3 } & \\
\hline
\end{tabular}
\(O\left(\tau(f) \tau(h)^{2}\right)\)
\(7 \quad h_{k}=\frac{1}{r f_{0} k} \cdot \operatorname{coeff}(r e s, k-1)\);
    \(8 \quad h+=h_{k} \cdot x^{k}\);
    9 end
10 return \(h\);
```


A little bit faster

- Modify the computation of res, compare how res changes in each iteration;
- Use hlo to note h in the last iteration, have :

$$
\begin{aligned}
r e s & =f^{\prime} \cdot\left(h l o+h_{k} x^{k}\right)-r f\left(h l o+h_{k} x^{k}\right)^{\prime} \\
& =r e s^{\prime}+f^{\prime} h_{k} x^{k}-r f k h_{k} x^{k-1}
\end{aligned}
$$

- Avoid the multiplication of two polynomials.

The Faster Algorithm

```
Algorithm 4: SparsePerfectPowerNonzeroConst
    Input: sparse polynomial \(f \in \mathrm{~F}[x]\) of degree \(n\) s.t. \(f_{0} \neq 0\) and integer \(s, r \in \mathbb{Z}\) s.t.
                    \(n=r s\)
    Output: sparse polynomial \(h \in \mathrm{~F}[x]\) such that \(f=h^{r}\)
    \({ }_{1} h_{0}=f_{0}^{1 / r}\);
    \(2 h=h_{0}\);
    3 res \(=f^{\prime} h_{0}\);
    \(4 k=1\);
    5 while ldegree (res) \(<s+1\) do
    \(6 \quad k=\) ldegree (res \()+1\);
        \(h_{k}=\operatorname{coeff}(r e s, k-1) /\left(r f_{0} k\right) ;\)
                            \(O(\tau(f) \tau(h))\)
        \(h_{+}=h_{h} \cdot x^{k}\);
        \(r e s+=f^{\prime} \cdot h_{k} x^{k}-r k f \cdot h_{k} x^{k-1} ;\)
10 end
11 return \(h\);
```


What if $f_{0}=0$?

- Find the lowest exponents of f, say d, then $f=\bar{f} x^{d}$ for some $\bar{f} \in F[x], \bar{f}_{0} \neq 0$.
- $\boldsymbol{f}_{\mathbf{0}}=\mathbf{0}$ can be reduced to the $\boldsymbol{f}_{\mathbf{0}} \neq \mathbf{0}$ case, the cost would be the same :

```
Algorithm 5: SparsePerfectPowerZeroConst
    Input: sparse polynomial \(f \in \mathrm{~F}[x]\) of degree \(n\) s.t. \(f_{0}=0\) and integer \(s, r \in \mathbb{Z}\) s.t.
                \(n=r s\)
    Output: sparse polynomial \(h \in \mathrm{~F}[x]\) such that \(f=h^{r}\)
    \(1 d=\) ldegree \((f)\);
    \(2 \bar{f}=f / x^{d} ;\)
    \({ }_{3} \bar{h}=\) Algorithm 4_SparsePerfectPowerNonzeroConst \((\bar{f}, r, s)\);
    \({ }_{4} h=\bar{h} \cdot x^{d / r}\);
    \({ }_{5}\) return \(h\);
```


So far

- We solved the Sparse Polynomial Perfect Power Problem, no matter "tame" or "wild" case, $f_{0}=0$ or $f_{0} \neq 0$ case.

Remark

- Algorithm 4\&5 actually compute the root assuming that $f=h^{r}$;
- But if not, the algorithms still output something:)
- That is actually a solution to a more general problem : $f=h^{r} \bmod x^{s}$
- To sufficiently check whether $f=h^{r}$, we can check whether $f^{\prime} h=r h^{\prime} f$ and $l c(f)=$ $l c(h)^{r}$, the multiplication is much faster than computing the power. The cost would be $O(\tau(f) \tau(h)$). (Giesbrecht and Roche 2008)
- In the thesis, we also discuss the perfect power for rational functions.

This Presentation

Solve the Polynomial Perfect Power Problem in dense setting
 Solve the Polynomial Perfect Power Problem in sparse setting

Solve Sparse Polynomial Decomposition inspired by the Polynomial Perfect Power Problem

Generalize the Polynomial Perfect Power Problem to Differential Equations

Polynomial Decomposition Problem

Let F be any finite field. Given $f=\sum_{i=0}^{n} f_{i} x^{i} \in F[x]$ with $\operatorname{deg}(f)=n, f_{n} \neq$ 0 , suppose that $n=r s$ for some $r, s \in \mathbb{N}$, determine whether there exists $g, h \in F[x]$ with $\operatorname{deg}(g)=r$ and $\operatorname{deg}(h)=s$ such that $f=g \circ h$.

Reduction of von zur Gathen(1990)

- In the following, we will assume the "tame" case;
- If $f=g \circ h$ and α, β are the leading coefficients of f, h, then an affine linear transformation yields :

$$
\begin{gathered}
\bar{f}=\frac{f}{\alpha}=\frac{g(h)}{\alpha}=\frac{g\left(\beta \cdot \frac{h-h(0)}{\beta}+h(0)\right)}{\alpha}=\left(\frac{g(\beta x+h(0))}{\alpha}\right) \circ \frac{h-h(0)}{\beta}=\bar{g} \circ \bar{h}, \\
\bar{f}=\frac{f}{\alpha}, \bar{g}(x)=\frac{1}{\alpha} \cdot g(\beta x+h(0)), \bar{h}=\frac{h-h(0)}{\beta}
\end{gathered}
$$

- Thus, we can assume f, g, h are monic and $h(0)=0$.

Observations of von zur Gathen(1990)

- Define the reversal of polynomials to be :

$$
\tilde{f}(x)=x^{n} \cdot f\left(\frac{1}{x}\right), \quad \tilde{h}(x)=x^{n} \cdot h\left(\frac{1}{x}\right)
$$

von zur Gathen(1990) observed that :

- If $f=g(h(x))$, then $\tilde{f}(x) \equiv \tilde{h}(x)^{r} \bmod x^{s}$;
- Since deg $(\tilde{h})=\operatorname{deg}(h)=s$ and $h(0)=0$, if such h exists it is unique.
- Polynomial Decomposition Problem can be solved via the computation of root h and a Taylor expansion for g, in the dense setting.

Sparse Polynomial Decomposition Problem

Let F be any finite field. Given sparse $f=\sum_{i=0}^{n} f_{i} x^{i} \in F[x]$ with $\operatorname{deg}(f)=$ $n, f_{n} \neq 0$, suppose that $n=r s$ for some $r, s \in \mathbb{N}$, determine whether there exists $\mathrm{g}, h \in F[x]$ with $\operatorname{deg}(g)=r$ and $\operatorname{deg}(h)=s$ such that $f=g \circ h$, if so, find h in a manner whose costs is polynomial $\log n, \log s, \tau(f), \tau(h), r$.

- By Zannier(2007,2008,2009), we can assume that g is of low degree and h is sparse if f is sparse;
- Follow the same "tame" assumption;
- Use the same reduction and reversal tricks;
- Our faster sparse perfect power algorithm would lead to a polynomial-time algorithm for sparse polynomial decomposition;
- g can be found using interpolation.

Sparse Polynomial Decomposition Algorithm

Algorithm 9: SparsePolyDecomp

Input: sparse polynomial $f \in \mathrm{~F}[x]$ of degree n, integer $s, r \in \mathbb{Z}$ s.t $n=r s$
Output: sparse polynomials $g, h \in \mathrm{~F}[x]$ such that $f=g \circ h$
$1 \alpha=\operatorname{lc}(f), \beta=\alpha^{1 / r}, h_{0}=f_{0}^{1 / r}$;
$2 \bar{f}=f / \alpha ;$
3 $\tilde{f}=\operatorname{reversal}(\bar{f})$;
$4{ }_{4} \tilde{h}=$ Algorithm 6_SparsePerfectPowerMod $(\tilde{f}, r, s) ;$
$5 \bar{h}=x^{s} \cdot h(1 / x) ;$
$\square O(\tau(f) \tau(h))$

6 $h=\beta \cdot \bar{h}+h_{0}$;
7 // Next we recover g;
8 Fix a set $\mathcal{S} \subseteq F$ with $2 n$ elements
${ }^{9}$ Let $a_{1}=h(0)$;
10 For i from 2 to r do
Choose a random $a_{i} \in S$ repeatedly until $h\left(a_{i}\right) \notin\left\{h\left(a_{1}\right), \ldots, h\left(a_{i-1}\right)\right\} ;$
12 Interpolate $g \in \mathrm{~F}[x]$ from points $\left\{\left(f\left(a_{1}\right), h\left(a_{1}\right)\right), \ldots,\left(f\left(a_{r}\right), h\left(a_{r}\right)\right)\right\}$; $O(r \tau(f) \log n)$ ̌OO

Check the correctness of the result

- In the perfect power case, we check $f=h^{r}$ by using the trick $f^{\prime} h=r h^{\prime} f$; this is fast even in the sparse setting;
- We don't know if there exists such a certificate for general polynomial decomposition;
- Can do a randomized test, a deterministic one is unknown.

Solve the Polynomial Perfect Power Problem in dense setting

Solve the Polynomial Perfect Power Problem in

 sparse settingSolve Sparse Polynomial Decomposition inspired by the Polynomial Perfect Power Problem

Generalize the Polynomial Perfect Power Problem to Differential Equations

Perfect Power Problem to Differential Equation

- Solving $f^{\prime} h=r h^{\prime} f$ is in fact solving a differential equation over power series :

$$
0=\left(f^{\prime}-r f \mathcal{D}\right) h
$$

where \mathcal{D} is the differential operator, $\left(f^{\prime}-r f \mathcal{D}\right)$ is a linear differential operator.

- Consider the general linear differential operator with polynomial coefficients :

$$
\mathcal{L}=f_{0}+f_{1} \mathcal{D}+f_{2} \mathcal{D}^{2}+\cdots+f_{\ell} \mathcal{D}^{\ell}
$$

for $f_{0}, \cdots, f_{\ell} \in F[x]$ (change of notation), $f_{\ell} \neq 0, \ell$ is the order of \mathcal{L}.

- We will use $f_{i, j}$ to denote the j th coefficient of f_{i}.

Sparse Linear Differential Equation Problem

Given $\mathcal{L}=f_{0}+f_{1} \mathcal{D}+f_{2} \mathcal{D}^{2}+\cdots+f_{\ell} \mathcal{D}^{\ell}$, where $\tau\left(f_{i}\right) \leq t$ and $m \in \mathbb{N}$. The problem is to find an h such that

$$
\mathcal{L} h \equiv 0 \bmod x^{m}
$$

- h is a "modulo approximation" to a power series solution to the differential equation;
- Sometimes we have a priori knowledge that h is sparse;
- Given $h_{0}, \cdots, h_{\ell-1}$, if $f_{\ell}(0) \neq 0$, then h exists and is unique;
(Undetermined Coefficient Method);
- The goal is to design an algorithm with $(\ell+t+\tau(h))^{O(1)}$ operations in F .

Similar "Newton-like" Method

$$
\begin{aligned}
0 & =f_{0} h+f_{1} h^{\prime}+\cdots+f_{\ell} h^{(l)} \\
& =f_{0}\left(\check{h}+h_{k} x^{k}+\hat{h} x^{k+1}\right)+f_{1}\left(\check{h}+h_{k} x^{k}+\hat{h} x^{k+1}\right)^{\prime}+\cdots+f_{\ell}\left(\check{h}+h_{k} x^{k}+\hat{h} x^{k+1}\right)^{(l)} \\
& =\left(f_{0} \check{h}+f_{1} \check{h}^{\prime}+\cdots+f_{\ell} \check{h}^{(l)}\right)+\frac{k!}{(k-\ell)!} h_{k} f_{\ell}(0) x^{k-\ell} \bmod x^{k-\ell+1} \\
& =R x^{k-\ell} \bmod x^{k-l+1}, \\
h_{k} & =-R /\left(\left.\frac{k!}{(k-\ell)!} \right\rvert\, f_{\ell}(0)\right) \\
\text { res } & =f_{0} \cdot\left(h l o+h_{k} \cdot x^{k}\right)+f_{1} \cdot\left(h l o+h_{k} \cdot x^{k}\right)^{\prime}+\cdots+f_{\ell} \cdot\left(h l o+h_{k} \cdot x^{k}\right)^{(\ell)} \\
& =r e s^{\prime}+h_{k} f_{0} x^{k}+k h_{k} f_{1} x^{k-1}+\cdots+\frac{k!}{(k-\ell)!} h_{k} f_{\ell} x^{k-\ell .}
\end{aligned}
$$

General Differential Equation Algorithm

```
Algorithm 12: GeneralCase
    Input: polynomial \(f_{0}, f_{1}, \cdots, f_{\ell} \in \mathrm{F}[x]\) of degree \(n_{0}, n_{1}, \cdots, n_{\ell}\) respectively s.t.
            \(f_{\ell}(0) \neq 0\) and integer \(m \in \mathbb{Z}\)
    Output: polynomial \(h \in \mathrm{~F}[x]\) such that \(f_{0} h+f_{1} h^{\prime}+\cdots+f_{\ell} h^{(\ell)} \equiv 0 \bmod x^{m}\)
    \({ }_{1}\) Pick any \(h_{0}, h_{1}, \cdots, h_{\ell-1}\);
    \(2 h=h_{0}+h_{1} x+\cdots+h_{\ell-1} x^{\ell-1}\);
    3 res \(=f_{0} h+f_{1} h^{\prime}+\cdots+f_{\ell} h^{(\ell)}\);
    \({ }_{4} k=1\);
    5 while ldegree (res) \(<m+1\) do
\(6 \quad k=\operatorname{ldegree}(r e s)+\ell\);
    \(h_{k}=-\operatorname{coeff}(r e s, k-\ell) /\left(-\frac{k!}{(k-\ell)!} f_{\ell}(0)\right)\);
    \(h+=h_{k} \cdot x^{k}\);
        \(O(t \ell \tau(h))\)
    res \(+=\sum_{i=0}^{\ell} \frac{k!}{(k-i)!} h_{k} \cdot f_{i} x^{k-i}\);
    end
    return \(h\);
```


Implementation

- We implement our algorithms in Maple as proof of concept;
- The algorithm works for any finite field, the implementation is over \mathbb{Z} computationally;

For the general differential equation :

- The solution sparsity decreases as the order ℓ increases;
- The solution sparsity increases as the coefficient sparsity bound t increases.

Implementation

- For the perfect power problem as a special case, i.e., $\ell=1$.
- The solution sparsity increases as the input sparsity $\tau(f)$ increases.
- Perfect power structure seems lead to a more linear relationship.

Summary

ρ

Solve the Polynomial Perfect Power Problem in dense setting

-

Solve the Polynomial Perfect Power Problem in sparse setting

Solve the Sparse Polynomial Decomposition

Generalize the Polynomial Perfect Power Problem to Differential Equations

Open Problems

- An optimal algorithm for sparse perfect power in $O(\tau(f)+\tau(h))$?
- Sparse Polynomial decomposition in the "wild" case?
- A deterministic algorithm to check the sparse polynomial decomposition?
- A fast algorithm to solve $\mathcal{L} h \equiv 0 \bmod x^{m}$ when $f_{\ell}(0)=0$?
- An optimal algorithm for $\mathcal{L} h \equiv 0 \bmod x^{m}$ in $O(t+\ell+\tau(h))$?
- Any other families of differential equations we can expect sparse Taylor series?

Thank you:)

- Supervisors

Mark Giesbrecht, Arne Storjohann

- Readers

George Labahn, Robert Corless

- My supportive family and friends

