
Reinforcement Learning for Combinatorial
Optimization

Saiyue Lyu
School of Computer Science

University of Waterloo
s6lyu@uwaterloo.ca

Abstract

Combinatorial optimization is a topic that aims at finding optimal solutions and
designing efficient algorithms for optimization problems over discrete structures.
Typical problems are the traveling salesman problem (TSP), the Minimum Vertex
Cover problem (MVC), Maximum Cut problem (MAXCUT) and the knapsack
problem. Researches have built up powerful frameworks to leverage Reinforce-
ment Learning (RL) to automate the process of designing good heuristics and ap-
proximation algorithms. This survey will give a review of recent breakthrough.

1 Introduction

Many real-world problems such as transportation, scheduling and social networks can be reduced to
combinatorial optimization on a discrete structure. Combinatorial optimization problems are mostly
well-studied theoretically and many exact or approximate algorithms have been proposed. There are
several canonical combinatorial optimization problems :

Traveling Salesman Problem (TSP) : (Euclidean Space) Given a set of nodes in 2-dimensional
space, find a tour of minimum total weight, where the corresponding graph G is fully
connected with edge weights corresponding to distances between points.

Minimum Vertex Cover Problem (MVC) : Given a graph G, find a subset of nodes S ⊆ V such
that every edge is covered, i.e. (u, v) ∈ E ⇔ u ∈ S or v ∈ S and |S| is minimized.

Maximum Cut Problem (MAXCUT) : Given a graph G, find a subset of nodes S ⊆ V such that
the weight of the cut set

∑
(u,v)∈C wu,v is maximized, where the cut set C ⊆ E is the set

of edges with one end in S and the other end in V \ S.
The KnapSack Problem (KnapSack) : (0-1 Knapsack) Given a set of n items each with weight

wi and value vi and a maximum weight capacity of W , maximize the sum of the values of
items present in the knapsack such that the sum of the weight is less than or equal to the
knapsack capacity W .

Over the past several decades, there have been remarkable advances in the development of ap-
proximation algorithms of these problems. For example, TSP, first introduced by the Irish math-
ematician W.R. Hamilton in the 1800s, has been well-studied with both exact and approximation
algorithms for Euclidean and non-Euclidean graphs. After years, Beardwood, Halton and Hammer-
sley (1959) present a practical solution by deriving an asymptotic formula to determine the length
of shortest route for fixed number of cities. Karp (1972) showed that the Hamilton cycle problem
is NP-complete, which implies the NP-hardness of TSP. Christofids (1976) finds an algorithm for
minimum spanning tree (MST) to return an approximate solution for TSP in polynomial time. After
years of great progress, Cook (1990) develop the program Concorde to tackle TSP and record recent
solutions. Later Cook (2006) computed an optimal route given 85,900 cities, which is currently the

Submitted to Reinforcement Learning (CS885, Spring 2020)

largest solved TSPLIB instance. To generalize the method, the difficulty in applying search algo-
rithms to new instances of similar problem is No Free Lunch theorem (Wolpert & Macready, 1997)
due to the fact that all search heuristics have the same performance when averaged over all problems,
one must appropriately rely on a prior over problems when selecting a search algorithm to guarantee
performance.

The design of good heuristics of combinatorial optimization problems is often sensitive to con-
straints, and even a slight change can require more significant specialized knowledge. So one of
the greatest challenge is applying existing search heuristics to newly encountered problems, though
researchers used ”hyper-heuristics“ to generalize the system, more or less, human created heuristic
is needed. Another concern is that these problems are often NP-hard and analytically intractable.
Approximation algorithms guarantee a worst-case solution, but sufficiently strong bounds may not
exist, even if they do, these algorithms can have limited scalability (Williamson & Shmoys, 2011).

Given above challenges, the application of neural networks to combinatorial optimization has been
quite a hot topic. Hopfield and Tank (1985) use Hopfield network and modify TSP objective to
get the equivalent network energy function, which can be solved using Lagrange multipliers. But
Wilson and Pawley (1988) point out the limitation that it is sensitive to hyperparameters and pa-
rameter initialization. Motivated by the advancements in sequence-to-sequence learning, Bello et
al.(2016) design the framework using RL to tackle this problem, they used policy gradients to train
pointer networks (Vinyals et al., 2015), a recurrent architecture that produced a softmax attention
mechanism (a ”pointer“) to select a member of the input sequence as an output.

2 Background

Policy Gradient

RL wants to find an optimal behavior strategy for the agent to obtain optimal rewards. The policy is
modeled with a parameterized function respect to θ and the value of the reward function depends on
this policy :

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)

where dπ(s) is the stationary distribution of Markov chain for πθ. The policy gradient methods aims
to model and optimize the policy directly, so various algorithms can be applied. But computing the
gradient∇θJ(θ) is tricky since it depends on both the action selection and the stationary distribution
of states following the target selection behavior. Sutton and Barto (2017) proves a powerful theorem,
the policy gradient theorem :

∇θJ(θ) = ∇θ
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)πθ(a|s)

∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s)

= Es∼dπ,a∼πθ
[
Qπ(s, a)∇θ lnπθ(a|s)

]
The policy gradient theorem lays the theoretical foundation for various algorithms, it provides a
nice reformation of the derivative of the objective function to not involve the derivative of the state
distribution dπ and simplify the gradient computation very much.

REINFORCE

REINFORCE algorithm (Williams, 1992), a Monte-Carlo policy gradient, relies on an estimated
return by Monte-Carlo methods using episode samples to update the policy parameter θ, the process
is as follows :

1. Initialize the policy parameter θ at random.

2. Generate one trajectory on policy πθ : S1,A2, · · · ,ST
3. For t = 1, · · · , T :

Estimate the returnGt and update policy parameters :θ ← θ+αγtGt∇θ lnπθ(At|St).

2

Note that Qπ(St,At) = Es∼dπ,a∼πθ
[
Gt∇θ lnπθ(At|St)

]
, and the expectation of the sample gradi-

ent equals the actual gradient, so REINFORCE works.A widely used variation of REINFORCE is
to subtract a baseline value from the return Gt to reduce the variance of gradient estimation while
keeping the bias unchanged.

Actor-Critic

Tow main components in policy gradient are the policy model ad the value function. Actor-Critic
helps to understand the value function, which assist the policy update. Actor-Critic algorithm con-
sists of two models, Critic and Actor. Critic updates the value function parameter w and it could be
action=value Qw(a|s) or state-value Vw(s) depending on the algorithm. Actor updates the policy
parameter θ for πθ(a|s) in the direction suggested by the critic. Before training, two learning rate
αθ and αw are predefined for policy and value function parameter updates respectively. A simple
action-value actor-critic algorithm is as follows :

1. Initialize s, θ, w at random; sample a ∼ πθ(a|s).

2. For t = 1, · · · , T :

Sample reward γt ∼ R(s, a) and next states s′ ∼ P (s′|s, a);

Sample the next action a′ ∼ πθ(a′|s′);

Update the policy parameters θ ← θ + αθQw(s, a)∇θ lnπθ(a|s);

Compute the correction for action-value at time t : δt = γt+γQw(s′, a′)−Qw(s, a);

Update the parameters of action-value function : w ← w + αwδt∇wQw(s, a);

Update a← a′ and s← s′.

Q-learning

Let S be the set of states, A be the set of actions, T : S ×A×S → [0, 1] be the transition function,
R : S → R be the reward function and γ ∈ [0, 1] be the discount factor, π : S → [0, 1] be a policy
mapping a state to a probability distribution over actions. Consider a Markov Decision Process
(MDP) defined by (S,A, T ,R, γ), the Q-value of a given pair (s, a) is given by :

Qπ(s, a) = E
[∞∑
t=0

γtR(st) | s0 = s, a0 = a, π
]

Mnih (2015) proposed a deep Q-network (DQN) with parameters θ. The Q-values of each state-
action pair is approximated by Q∗(s, a) = maxπ Q

π(s, a), which is trained by the θ parameterized
network. And an approximated optimal policy is given by acting greedily with respect to the pre-
dicted Q-values : π(s; θ) = arg maxaQ(s, a; θ).

Sequence-to-Sequence Model

Given a training pair, (P, CP), where P = {P1, · · · , Pn} is a sequence of n vectors and CP =
{C1, · · · , Cm(P)} is a sequence of m(P) indices, each between 1 and n, the sequence-to-sequence
model uses an recurrent neural network (RNN) with parameters θ to estimate the conditional prob-
ability :

p(CP |P; θ)) =

m(P)∏
i=1

pθ(Ci|C1, · · · , Ci−1,P; θ)

where the learnt parameters θ∗ is given by :

θ∗ = arg max
θ

∑
P,CP

log p(CP |P; θ))

The model makes no statistical independence assumptions, so we consider two seperate RNN mod-
els, encoder and decoder, both of them use Long Short Term Memory (LSTM) cells (Hochreiter &
Schmidhuber, 1997), which is a mechanism helping the model to keep track of long-distance depen-
dencies more easily. The encoder steps through an input string one element at a time and transform
the sequence into an output that it gives to the decoder. The decoder then unpacks the encoder’s
output one element at a time, creating the model’s output sting, which can be illustrated as :

3

Figure 1: A Sequence-to-Sequence Model (Nag, 2016)

3 Reinforcement Learning Approaches for Typical Problems

3.1 Pointer Network

First we take a close look at TSP for 2-dimensional Euclidean, which is formally formulated as :
given a graph G with a sequence of n nodes {xi}ni=1 in a 2-dimensional spaces, find a permutation
of the points π, i.e. a tour, that visits each city once and has the minimum total length, where the
length of a tour is defined with respect to l2 norm :

L(π|s) = ‖xπ(n) − xπ(1)‖2 +

n−1∑
i=1

‖xπ(i) − xπ(i+1)‖2

The main task is to assigns high probabilities to short tours and low probabilities to long tours
naturally. To achieve this, we need to learn the parameters of a stochastic policy p(π|s) via the
neural network architecture, which uses the chain rule to factorize the probability (Sutskever, 2014)
of a tour as :

p(π|s) =

n∏
i=1

p
(
π(i)|π(< i), s

)
Naturally one can use a vanilla sequence-to-sequence model to tackle TSP when the output vocab-
ulary is [n] = {1, · · · , n}. But the trained network can not be generalized for more than n nodes of
inputs. Another issue is that in order to optimizing the parameters with conditional log-likelihood,
access to ground-truth output permutations are needed. So Bello et al.(2016) used policy gradients
to train Pointer Network (Vinyals et al., 2015), a recurrent architecture that produces a softmax
attention mechanism to select a member of the input sequence as an output.

Figure 2: A Pointer Network Architecture (Vinyals et al., 2015)

The TSP problem is encoded as a sequence with encoder RNN θenc, i.e. the encoder takes the
input sequence s, one node at one time and transforms it into a sequence of latent memory states
{enci}ni=1 ⊆ Rd. And the solution is decoded as a sequence with decoder RNN θdec, i.e. the
decoder also obtain its latent memory states {deci}ni=1 ⊆ Rd and uses a pointing mechanism to
return a distribution of the next visit city at each step. Then they optimized the parameters using
policy gradients, where the training objective is the expected tour length, given an input graph s :

J(θ|s) = Eπ∼pθ(·|s)L(π|s)

4

They uses the REINFORCE trick (Williams, 1992) to express gradient as an expectation and ap-
proximate gradient with Monte Carlo sampling given that ln pθ is differentiable :

∇θJ(θ|s) = Eπ∼pθ(·|s)

[(
L(π|s)− b(s)

)
∇θ ln pθ(π|s)

]
∇θJ(θ) ≈ 1

B

B∑
i=1

(
L(πi|si)− b(si)

)
∇θ ln pθ(πi|si)

But the problem is that this gradient has lots of variance since most of the time the cost will be very
large and it can be very slow to train, so in some cases they use a more recent algorithm, Actor-Critic
training, which introduces an auxiliary network parameterized by θv , a Critic, to encode bθv (s) and
evaluate the expected tour length under the parameter. Instead of weighting by the extra cost, the
additional objective subtracts a bias which is also an estimate of how the cost will be, i.e.

L(θv) =
1

B

B∑
i=1

‖bθv (s)− L(πi|si)‖22

where b(s) is the expected tour length Eπ∼pθ(·|s)[L(π|s)]. It is trained with Mean Squared Error
(MSE) gradient descent to reduce variance of gradient approximation. So it will gives a faster result.

For the inference, note that the optimal inference is NP-hard due to the chain factorization, there are
many possible alternative ways to get an approximate inference :

Greedy Decoding : Look at the max of the first city and take it as the input as the next step. At
each step in the decoder, select the next city with highest probability.

Beam Search : Instead of just looking at the max, look at the B max. Greedily maintain B candi-
date solutions based on the probability of the subsequences so far.

Sampling : Sample many solutions from pθ(·|s) and keep track of the best one.
Active Search : Train parameter θ with REINFORCE on single input problem and keep track of

best solution found during training.

With experiments on Euclidean TSP with 20, 50 and 100 cities in the unit square, despite the com-
putational expense, this structure achieves close to the optimal results. This can also be applied to
the KnapSack, which will obtain optimal solutions for instances with up to 200 items.

3.2 Structure2Vec Deep Q-learning (S2V-DQN)

Bello et al. (2016) used policy gradients to train Pointer Network, however, this architecture did not
reflect the structure of problems defined over a graph as their model only works on the Euclidean
TSP problem,where each node is represented by its 2-dimensional coordinates, and it is not designed
for problems with graph structure. And it often require a huge number of instances to learn to gen-
eralize to new ones. What’s more, the policy gradient is not particularly sample-efficient. To handle
these issues, Khalil et al.(2017) addressed S2V-DQN, a general RL based network for combinatorial
optimization problems that uses a combined graph embedding network and deep Q-network. The
particular problem statement they addressed is that : Given a graph optimization problem G and
a distribution D of the problem instances, can we learn better heuristics that generalize to unseen
instances from D? For example, given the integer programming formulation of MVC :

min
xi∈{0,1}

∑
i∈V

xi

s.t. xi + xj ≥ 1,∀(i, j) ∈ E

We consider a constant reward γt = −1 and the Q-function takes a current partial solution S in their
candidate vertex as input and returns additional number of vertices required, i.e. the action value
function is Q̂(S, v), where state S is the current partial solution. And the greedy policy selects the
vertex with largest score at each step, i.e. v∗ = arg maxv Q̂(S, v). But how to represent the action
value function Q̂(St, v; θ)?

5

To represent the action value function, one can use feature engineering, but it is hard to construct
and generalize. Dai et al.(2017) used structure2vec, a graph embedding network for better graph
representation, which they introduced in 2016. The structure2vec computes each node embedding
as a nonlinear function of neighborhood embedding iteratively. In the last layer, it predicts the
Q-function on each node. This procedure can be illustrated as follows :

Figure 3: Structure2Vec (Dai et al., 2016)

This graph embedding network computes a p−dimensional feature embedding µv for each node
v ∈ V given the current partial solution S. The node-specific tags or features xv are aggregated
recursively according to G’s graph topology. It begins with initialization of the embedding µ(0)

v at
each node as 0 and for all v ∈ V , it update the embeddings synchronously at each iteration as :

µ(t+1)
v ← F

(
xv, {µ(t)

u }u∈N (v), {w(v, u)}u∈N (v); θ
)

where N is the set of neighbors of node v in graph G and F is a generic nonlinear mapping such as
a neural network or kernel function.

There is one more step we need to do, that is, to formulate these combinatorial problems using a
common way for greedy algorithm. Consider a problem instance G is sampled from a distribution
D, a partial solution is represented as an ordered list S = (v1, · · · , v|S|), vi ∈ V and S̄ = V \ S.
Define a indicator variable x such that xv = 1 for all v ∈ S and 0 otherwise. They assume a given
helper function h(S), which maps S to a combinatorial structure satisfying the specific constraints
of a problem. For example, for MVC, the helper function does not need to do any work while for
MAXCUT, the helper function divides V into two sets S and its complement S̄, and maintains a
cut-set C = {e = (u, v) ∈ E |u ∈ S, v ∈ S̄}. And for TSP, the helper function maintain a tour
according to the order of the nodes in S .The quality of a partial solution S is given by c

(
h(S), G

)
,

an objective function based on h. Then a greedy algorithm selects a node v to add next such that
v is a maximizer of an evaluation function Q

(
h(S), v

)
∈ R, which depends on h(S). The partial

solution S will be extended as S ← (S, v∗) by appending v∗, where v∗ = arg maxv∈S̄ Q
(
h(S), v

)
.

They also assume the termination criterion t
(
h(S)

)
and the cost function c are given. For example,

for MVC, the cost function c
(
h(S), G

)
= −|S| and the termination criterion checks whether all

edges are covered.

Then we can discuss how to parameterize Q̂
(
h(S), v; θ

)
using structure2vec. Dai et al.(2017) de-

fined the nonlinear update rule F to behave as :

µ(t+1)
v ← Relu

(
θ1xv + θ2

∑
u∈N (v)

µ(t)
u + θ3

∑
u∈N (v)

Relu
(
θ4w(v, u)

))

where θ1 ∈ Rp, θ2, θ3 ∈ Rp×p and θ4 ∈ Rp are the model parameters. After T iterations, we can
define the Q̂

(
h(S), v; θ

)
to be :

Q̂
(
h(S), v; θ

)
= θ>5 Relu

(
[θ6

∑
u∈V

µ(T)
u , θ7µ

(T)
v]

)

where θ5 ∈ R2p, θ6, θ7 ∈ Rp×p. So our parameters θ = {θi}7i=1. The embedding representation
allows the policy to discriminate among nodes and generalizes to problem instances of different
sizes, which fully exploit graph structure unlike previous sequence-to-sequence mapping.

6

Dai et al.(2017) used a DQN algorithm to learn a greedy parameterized policy, where a states S is a
sequence of actions (nodes) on a graph G, an action v is a node of G that is not part of the current
state S, the reward function r(S, v) at state S is defined to be the change on the cost function,
i.e. r(S, v) = c

(
h(S′), G

)
− c
(
h(S), G

)
, where S′ = (S, v) is the new state, and a deterministic

greedy policy π(v|S) = arg maxv′∈S̄ Q̂
(
h(S), v′

)
. The main DQN algorithm is a combination of

n−step Q-learning and fitted Q-iteration. At the step t, vt is updated to a random node v ∈ S̄t
with probability ε and to arg maxv∈S̄t Q̂

(
h(St), v; θ

)
with probability 1− ε. The partial solution is

updated by appending the updated vt. The overall framework can be illustrated as :

Figure 4: S2V-DQN applied to an instance of MVC (Dai et al., 2017)

It is efficient since it can be executed in polynomial time. Dai et al.(2017) also demonstrated the
learned model’s ability to generalize to much larger problem instances than it was trained on. Their
model generalized well even to instances of 1200 nodes and could produce in 12 second solutions
that were sometimes better than what a commercial solver could find in one hour.

3.3 Exploratory Combinatorial Optimization Deep Q-learning (ECO-DQN)

Approaches following S2V-DQN’s framework incrementally construct solutions one element at a
time, which reduce the problem to predict the value of adding one vertex to the current solution
subset. However, due to the inherent complexity of different combinatorial problems, learning a
policy that directly produces a single optimal solution is often not practical. As vertices can only be
added to the solution set, policies derived from the learned Q-values, such as a typical greedy policy,
will likely be sub-optimal.

Following S2V-DQN, Barrett et al.(2020) proposed an approach of exploratory combinatorial opti-
mization (ECO-DQN), which seeks to continuously improve the solution by learning to explore at
test time. Focusing on MAXCUT, each vertex v ∈ V is represented with an n-dimensional embed-
ding µ(t)

v similarly like in S2C-DQN. The embeddings are repeatedly updated based on neighbor-
hood vertices :

m(t+1)
v ←Mt

(
µ(t)
v , {µ(t)

u }u∈N (v), {w(u, v)}u∈N (v)

)
µ(t+1)
v ← Ut

(
µ(t)
v ,m(t+1)

v

)
where Mt and Ut are message function and update function. After T iterations, some readout
function will produce a prediction, which is the set of Q-values of actions corresponding to ”flip-
ping“ each vertex, i.e. adding or removing it from the current partial solution, i.e. {Qv}v∈V =

R
(
{µ(T)

u }u∈V . The Q-value of the modified vertex is continually re-evaluated among the episode’s
history, to achieve this with more freedom for improved performance, Barrett et al.(2020) shaped the
reward by setting the the reward at state st ∈ S to be R(st) = max

(
C(st) − C(s∗), 0

)
|V |, where

s∗ ∈ S is the state corresponding to the highest cut value previously seen within the episode and the
reward is normalized by |V |, to mitigate the impact of different reward scales across different graph
sizes. Barrett et al.(2020) used 7 observations to calculate Q-value for each flipping vertex, which
are : vertex state (if whether v is in the current partial solution set S), immediate cut change if vertex

7

state is changed, steps since the vertex state was last changed, difference of current cut-value from
the best observed, distance of current partial solution set from the best observed, number of avail-
able actions that immediately increase the cut-value, steps remaining in the episode. By comparing
ECO-DQN to S2V-DQN, Barrett et al.(2020) demonstrate that their approach improves the state-of-
the-art for applying RL to MAXCUT. And it can start from from any arbitrary configuration, thus
can be combined with other search methods to further improve performance. Moreover, ECO-DQN
also generalizes well to graph from unseen distribution.

4 Discussion

The above work all showed their significance, here are some possible further direction from my
point of view.

For Pointer Network, it is designed for 2-dimensional problems, how can it be generalized to larger
dimensions? And the Pointer Network is sensitive to the order of the input, Bello et al. (2016) took
the obvious order flattening them all from from input to output, but what happened if we rule out
that order? Will it give a better or a worse result? For S2V-DQN, a helper function h is assumed
to be given to describe the graph structure and aid the neural network find better solutions, which is
human-designed and problem-specific, which is what we would like to avoid. And S2V-DQN solves
the decision versions of combinatorial problems while in the real world, they are often encountered
as budget constrained versions.

And the real-world task is to train large deep learning models where model parallelism is important.
But getting good performance given multiple computing devices is non-trivial and non-obvious.
How to make choices of these devices? Can we actually automate this procedure again? A model
could have multiple layers, multiple attention layers and multiple output layers as well as in some
point it could have Softmax. It can be put on a single device if it is not big, but if it is, we have to
put is on multiple devices, for example :

Figure 5: A Task on Multiple Devices (Bengio et al., 2017)

But this way of assigning devices may not be optimal. Is there any better way? This could be
considered as a problem in reinforcement learning for higher performance models.

Overall, finding structure in problems with vast search spaces is quite practical direction for RL.
Many algorithms have been proposed to tackle games and control problems, but these breakthrough
in combinatorial problems via RL showed the power of RL can also be leveraged to graph problems
to better satisfy real-world needs.

8

References
[1] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural com-

binatorial optimization with reinforcement learning. CoRR, abs/1611.09940, 2016. URL
http://arxiv.org/abs/1611.09940.

[2] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in neural
information processing systems, pages 2692–2700, 2015.

[3] Thomas D Barrett, William R Clements, Jakob N Foerster, and Alex I Lvovsky. Exploratory
combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1909.04063,
2019.

[4] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems, pages 5998–6008, 2017.

[6] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

[7] Akash Mittal, Anuj Dhawan, Sahil Manchanda, Sourav Medya, Sayan Ranu, and Ambuj
Singh. Learning heuristics over large graphs via deep reinforcement learning. arXiv preprint
arXiv:1903.03332, 2019.

[8] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[9] David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-
bridge university press, 2011.

[10] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Implementing the dantzig-
fulkerson-johnson algorithm for large traveling salesman problems. Mathematical program-
ming, 97(1-2):91–153, 2003.

[11] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling sales-
man problem: a computational study. Princeton university press, 2006.

[12] Laura I Burke. Neural methods for the traveling salesman problem: insights from operations
research. Neural Networks, 7(4):681–690, 1994.

[13] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Leven-
berg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensor-
flow: A system for large-scale machine learning. CoRR, abs/1605.08695, 2016. URL
http://arxiv.org/abs/1605.08695.

[14] S. V. B. Aiyer, M. Niranjan, and F. Fallside. A theoretical investigation into the performance
of the hopfield model. IEEE Transactions on Neural Networks, 1(2):204–215, 1990.

[15] X. Xu, Z. Jia, J. Ma, and J. Wang. A self-organizing map algorithm for the traveling salesman
problem. In 2008 Fourth International Conference on Natural Computation, volume 3, pages
431–435, 2008.

[16] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393–410, 1954.

[17] Favio Favata and Richard Walker. A study of the application of kohonen-type neural networks
to the travelling salesman problem. Biological Cybernetics, 64(6):463–468, 1991.

[18] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

[19] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–100, 1991.

[20] Christos H. Papadimitriou and PAPADIMITRIOU CH. The euclidean traveling salesman prob-
lem is np-complete. 1977.

9

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1605.08695

