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A Step to Fermat’s Last Theorem

Saiyue Lyu

This is a tiny essay about Lamé’s Lemma and Kummer’s Lemma using group theory
to show a special case of Fermat’s Last Theorem : When Z[ω] = {∑

p
i=1 aiω

i−1} is a unique
factorization domain with p being a prime, the equation xp +yp = zp has no integer solution
with p ∤ xyz. This essay is also based on exercises in Marcus’s Number Fields, which is
the reference book for PMath 441/641 (Algebraic Number Theory) instructed by Professor
Wentang Kuo in my 3A term at University of Waterloo.

For years Fermat’s Last Theorem attracts mathematicians, which states that the Dio-
phantine equation

xn + yn = zn

has no nonzero integer solution (x, y, z) for n > 2.

1. Fermat’s Last Theorem for cases n = 1

It is clear when n = 1, x + y = z has a set of integer solutions.

2. Fermat’s Last Theorem for cases n = 2

When n = 2, we would like to find the integer solution of x2 + y2 = z2

Up to scalar isomorphism, we may assume gcd(x, y, z) = 1
Define Z[i] = {a + bi, a, b ∈ Z} to be the set of Galois integers, it is obvious that Z[i] is

a Euclidean domain, thus a Principle Ideal Domain, a Unique Factorization Domain.
In Z[i], we have x2 + y2 = (x + iy)(x − iy) = z2

Claim : x+ iy can be written as u ⋅α2 for some Galois integer α and Galois integer unit u
(i.e. ∃ v ∈ Z[i] such that uv = 1)

From (x + iy)(x − iy) = z2 and the unique factorization division of Z[i], it is sufficient
to show that (x + iy) and (x − iy) are coprime, i.e. have no common factor. Since if they
are coprime and their product is a square, then each of them must be a square).

We suppose for contradiction that Π is a common factor of (x + iy) and (x − iy).
To get the contradiction, we would like to show Π ∣1, i.e. Π is a unit.
Since Π∣(x + iy) and Π∣(x − iy), we get

Π ∣ (x + iy) + (x − iy) ⇒ Π ∣2x

Π ∣ (x + iy) ⋅ (x − iy) ⇒ Π ∣ z2

Which gives us

Π ∣ gcd(2x, z2)

By assumption, we have gcd(x, y, z) = 1, thus gcd(x, z) = 1, hence we obtain as long as
we prove gcd(2, z) = 1, we would have gcd(2x, z2) = 1
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If 2 ∣ z, we can write x = 2a + 1, y = 2b + 1, z = 2c for some a, b, c ∈ Z, then we have

x2 + y2 = z2 ⇒ 4a2 + 4a + 4b2 + 4b + 2 = 4c2

But this is a contradiction since after modulo 4, we have 2 = 0 mod 4, hence we must
have 2 ∤ z. Therefore we have (x + iy) and (x − iy) are coprime.

Also consider the Galois integer unit of Z[i] are ±1 and ±i, hence we have

x + yi = u ⋅ (a + bi)2 for some a, b ∈ Z
= u ⋅ (a2 − b2 + 2abi)

Hence we finally obtain the value set of x, y, z :

{x, y} = {±(a2 − b2) ± 2ab} , z = ±(a2 ± b2) , a, b ∈ Z

3. Fermat’s Last Theorem for cases n = 3

When n = 3, x3 + y3 = z3 has no solution by direct proof

1. Fermat’s Last Theorem for cases n > 3

Consider when n ≥ 3, the problem can be reduced to n = p, for p being a prime since if
p ∣ n and n ≠ 2k, xn + yn = zn ⇐⇒ (xn/p)p + (yn/p)p = (zn/p)p

Also note when n = 4 (also the case for p = 2), the equation has no integer solution,
which is a direct consequence by the case when n = 2.

So now consider the reduced problem when p > 3. Define the p−th root of unit to be
ω = e2πi/p. At this stage, we only look at the case when p ∤ xyz, which is the famous
Lamé’s Lemma :

Let p > 3 be a prime. Assume Z[ω] = {a0 + a1ω + ⋯ + ap−1ωp−1} is a Unique
Factorization Domain (UFD). If p ∤ xyz, then xp+yp = zp has no integer solutions.

We proceed by contradiction. Suppose that xp + yp = zp for some nonzero x, y, z ∈ Z.
Considering that xp + yp = (x + y)(x + yω)(x + yω2)⋯(x + yωp−1) = zp

Let y = −1, we have

(x − 1)(x − ω)(x − ω2
)⋯(x − ωp−1) = xp + (−1)p = xp − 1 as p is odd

= (x − 1)(xp−1 + xp−2 +⋯ + x + 1) as p is odd

Here x ≠ 1, otherwise zp = 1p + (−1)p = 0 leads to p ∣ xyz, hence have :

(x − ω)(x − ω2
)⋯(x − ωp−1) = xp−1 + xp−2 +⋯ + x + 1

Now take x = 1, we have :

(1 − ω)(1 − ω2)⋯(1 − ωp−1) = p
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Claim 1 : x + yω = uαp for some unit u ∈ Z[ω] and α ∈ Z[ω].
Assume Π is a prime element with Π ∣ (x + yω). And suppose for contradiction that

Π ∣ (x + yωi), for some i = 0, or 2 ≤ i ≤ p − 1, i.e.

Π ∣ (x + yωi)

With the previous condition

Π ∣ (x + yω)

By modular property, we have :

Π ∣ (x + y)(x + yω)(x + yω2)⋯(x + yωp−1) = zp

This leads to : Π ∣ z
On the other hand, since Π ∣ (x + yωi) and Π ∣ (x + yω), have :

Π ∣ ((x + yω) − (x + yωi))⇒ Π ∣ yω(1 − ωi−1)

Since 0 ≤ i < p, i ≠ 1 by assumption
Then (1 − ωi−1) is one of the factors in the product (1 − ω)(1 − ω2)⋯(1 − ωp−1) = p
Hence have y(1 − ωi−1) ∣ yp, then Π ∣ yωp, thus Π ∣ yp as ω is a unit
Since z and yp are co-prime, then ∃m,n ∈ Z such that zm + ypn = 1
Consider Π ∣ z,Π ∣ yp and m,n ∈ Z, hence Π ∣ (zm + ypn)⇒ Π ∣ 1
This contradicting the fact that Π is a prime element.
Therefore Π ∤ (x + yωi),∀i = 0 or 2 ≤ i ≤ p − 1
Since if Π ∣ (x + yω), then Π ∤ (x + yωi),∀i = 0, or 2 ≤ i ≤ p − 1

Then (x + yω) and
0≤i≤p−1
∏
i≠1

(x + yωi) are relatively prime ∀i = 0, or 2 ≤ i ≤ p − 1

Note that their product is a pth power and Z[ω] is a UFD by assumption.

Since no irreducible factor will appear in (x + yω) and
0≤i≤p−1
∏
i≠1

(x + yωi)

Then each factor appearing in (x + yω) must appear a multiple of p times.
I.e. must have x + yω is a pth power, up to unit multiple.
Therefore x + yω = uαp for some unit u ∈ Z[ω] and α ∈ Z[ω]

Now consider dropping the assumption that Z[ω] is a UFD but using the fact that ideals
factors uniquely (up to order) into prime ideals.

Claim 2 : The principal ideal < x + yω >= Ip for some ideal I.
Suppose for contradiction that ∆ is a common prime ideal factor of < x + yω > and

< x + yωi >, for some i = 0,2⋯p − 1. By equation (1’), also have

∆ ∣< z >p

Since ∆ is prime, this forces ∆ ∣< z >, i.e.

< z >⊂ ∆ (1)
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Since ∆ ∣< x + yω > , ∆ ∣< x + yωi >, then ∆ ∣ (< x + yω > + < x + yωi >), i.e.

∆ ⊃ (< x + yω > + < x + yωi >) =< x + yω,x + yωi >

=< x + yω, (x + yω) − (x + yωi) >

=< x + yω, yω(1 − ωi−1) >

⊃< yω(1 − ωi−1) >=< y >< 1 − ωi−1 >

Since 0 ≤ i ≤ p − 1, i ≠ 1 by assumption, then have

< 1 − ωi−1 > ∣< 1 − ω >< 1 − ω2 > ⋯ < 1 − ωp−1 >=< p >
< y >< 1 − ωi−1 > ∣< y >< p >=< yp > Ô⇒ < y >< 1 − ωi−1 >⊃< yp >

Hence have :

∆ ⊃< yp > (2)

Combining (1) and (2), have

< z > + < yp >⊂ ∆

Since z and yp are relatively prime, then ∃m,n ∈ Z such that zm + ypn = 1, hence

1 ∈ < z > + < yp >⊂ ∆

Which is a contradiction since ∆ can not contain 1 as a proper ideal
Therefore < x+yω > has no common prime ideal factor with < x+yωi >,∀i = 0,2,⋯, p−1

Then, < x + yω > and
0≤i≤p−1
∏
i≠1

< x + yωi > have no common prime ideal factors.

By the Unique Prime Ideal Factorization applied to equation (1’),
Each factor appearing in < x + yω > must appear a multiple of p times

Note also factors appearing in < x + yω > must not appear in
0≤i≤p−1
∏
i≠1

< x + yωi >

Therefore < x + yω >= Ip for some ideal I.

Claim 3 : Every element of Q[ω] is uniquely representable in the form

a0 + a1ω + a2ω
2 +⋯ + ap−2ωp−2 ∀0 ≤ i ≤ p − 2, ai ∈ Q

When ω = e2πi/p, we have :

Φp(ω) = ω
p−1

+ ωp−2 +⋯ + ω + 1

=
ωp − 1

ω − 1
as ω ≠ 1

=
(e2πi/p)p − 1

ω − 1

=
e2πi − 1

ω − 1
= 0
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Hence ω is a root of the cyclotomic polynomial Φp(x). Moreover,

Φp(x + 1) =
(x + 1)p − 1

(x + 1) − 1

=
(x + 1)p − 1

x

= xp−1 + (
p

1
)xp−2 + (

p

2
)xp−3 +⋯ + (

p

p − 2
)x + (

p

p − 1
)

Using Eisenstein’s Criterion with p as p ∤ 1, p2 ∤ (
p
p−1), p ∣ (

p
i
),∀1 ≤ i ≤ p − 1

Hence Φp(x + 1) ∈ Q[x] is irreducible, thus so is Φp(x) ∈ Q[x]
Therefore Φp(x) is the minimal polynomial for ω over Q

By definition, every element in Q[ω] can be wrriten as the form

α0 + α1ω + α2ω
2 +⋯ + αnω

n for some n and αi ∈ Q,∀i

When n = p − 2, we are done immediately.
When n < p − 2, we are done by setting αj = 0 ∈ Q ,∀n + 1 ≤ j ≤ p − 2
Hence WLOG, we assume n ≥ p − 1
Since Φp(ω) = ω

p−1 + ωp−2 +⋯ + ω + 1 = 0 by above, have

ωp−1 = −(ωp−2 +⋯ + ω + 1)

Then any element in Q[ω] can be written as

α0 + αω + α2ω
2
+⋯ + αnω

n
= α0 + α1ω + α2ω

2
+⋯ + αn−1ωn−1 + αnωn−p+1ωp−1

= α0 + α1ω + α2ω
2
+⋯ + αn−1ωn−1 − αnωn−p+1(ωp−2 +⋯ + ω + 1)

= β0 + β1ω + β2ω
2
+⋯ + βn−1ωn−1

where

βi =

⎧⎪⎪
⎨
⎪⎪⎩

αi, for 0 ≤ i < n − p + 1

αi − αn, for n − p + 1 ≤ i ≤ n − 1

I.e., α0 +αω +α2ω
2 +⋯+αnω

n can be written in the form β0 +β1ω+β2ω
2 +⋯+βn−1ωn−1

By iteration (or induction), α0 + αω + α2ω
2 +⋯ + αnω

n can be written in the form

a0 + a1ω + a2ω
2 +⋯ + ap−2ωp−2 for some ai ∈ Q,∀0 ≤ i ≤ p − 2

Now it remains to show the uniqueness of this representation.
Suppose that some element in Q[ω] achieves 2 representation, i.e.

a0 + a1ω + a2ω
2 +⋯ + ap−2ωp−2 = b0 + b1ω + b2ω2 +⋯ + bp−2ωp−2 for some ai, bi ∈ Q

(a0 − b0) + (a1 − b1)ω + (a2 − b2)ω
2 +⋯ + (ap−2 − bp−2)ωp−2 = 0

Hence ω is a root of f(x) ∈ Q[x] where

f(x) = (a0 − b0) + (a1 − b1)x + (a2 − b2)x
2 +⋯ + (ap−2 − bp−2)xp−2
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Since Φp(x) is the minimal polynomial of ω over Q by above, then have

Φp(x) ∣ f(x)

(1 + x +⋯ + xp−2 + xp−1) ∣ ((a0 − b0) + (a1 − b1)x + (a2 − b2)x
2 +⋯ + (ap−2 − bp−2)xp−2)

This forces f(x) = 0 as deg Φp = p − 1 > p − 2 = deg f
Hence ai = bi,∀0 ≤ i ≤ p − 2, i.e. the representation is unique.

Therefore every element in Q[ω] is uniquely representable in the form

a0 + a1ω + a2ω
2 +⋯ + ap−2ωp−2 ∀0 ≤ i ≤ p − 2, ai ∈ Q

By the similar steps in Claim 3,
we can show that every element in Z[ω] can be written in the form

a0 + a1ω + a2ω
2 +⋯ + ap−2ωp−2 ∀0 ≤ i ≤ p − 2, ai ∈ Z

If p ∣ α, i.e.α = p ⋅ β for some β = b0 + b1ω + b2ω
2 +⋯ + bp−2ωp−2 ∈ Z[ω], then

α = a0 + a1ω + a2ω
2
+⋯ + ap−2ωp−2 = pβ

= p(b0 + b1ω + b2ω
2
+⋯ + bp−2ωp−2)

= pb0 + pb1ω + pb2ω
2
+⋯ + pbp−2ωp−2

Since the representation of α is unique by the result from Claim 3
Then ai = pbi, ∀0 ≤ i ≤ p − 2
Therefore ∀0 ≤ i ≤ p − 2, p ∣ ai

Now define congruence mod p for β, γ ∈ Z[ω] as follows:

β ≡ γ mod p ⇐⇒ β − γ = pδ for some δ ∈ Z[ω]

In terms of the language of ideal, this is congruence mod the principal ideal pZ[ω]

Claim 4 :If β ≡ γ, then β̄ ≡ γ̄, where the bar denotes complex conjugation.
By definition of congruence in Z[ω], since β ≡ γ, then β − γ = pδ for some δ ∈ Z[ω]
Take the conjugate of both sides, we have :

β − γ = pδ

β̄ − γ̄ = p̄δ̄

β̄ − γ̄ = pδ̄

Also note that

ω̄ = ¯e2πi/p = e−2πi/p = e−2πi/p+2πi = e(p−1)2πi/p = (e2πi/p)p−1 = ωp−1

By the iteration procedure in Claim 3,
We have that ωp−1 can be written in the form β0 + β1ω + β2ω

2 +⋯ + βn−1ωn−1



7

Hence ω̄ ∈ Z[ω]
Similarly in Claim 3, δ ∈ Z[ω] can be written in the form a0+a1ω+a2ω

2+⋯+ap−2ωp−2

It follows that δ̄ ∈ Z[ω], i.e. β̄ ≡ γ̄ mod p by definition

Claim 5 : (β + γ)p ≡ βp + γp mod p
By definition, it suffices to show that

(β + γ)p − (βp + γp) = pδ for some δ ∈ Z[ω]

By Binomial Theorem, we have

(β + γ)p − (βp + γp) =
p−1
∑
k=1

(
p

k
)βkγp−k

=

p−1
∑
k=1

p!

k!(p − k)!
βkγp−k

Since p ∣ p!, , p ∤ k!(p − k)! for all 1 ≤ k ≤ p − 1, we have p ∣ (
p
k
) for all 1 ≤ k ≤ p − 1, i.e.

(β + γ)p − (βp + γp) = p ⋅
p−1
∑
k=1

(p − 1)!

k!(p − k)!
βkγp−k where

p−1
∑
k=1

(p − 1)!

k!(p − k)!
βkγp−k ∈ Z[ω]

Therefore (β + γ)p ≡ βp + γp mod p

The generalization of this is (β1 +⋯ + βn)
p ≡ βp1 +⋯ + βpn for all n ≥ 2

To show this, we proceed by induction on n.
We have proven that the case when n = 2 holds.
Assume we have the congruence equation for given n, i.e.

(β1 +⋯ + βn)
p
≡ βp1 +⋯ + βpn

Then we consider the case for n + 1 :

(β1 +⋯ + βn + βn+1)p ≡ (β1 +⋯ + βn)
p
+ βpn+1 by the case when n = 2

≡ βp1 +⋯ + βpn + β
p
n+1 by assumption of case n

Therefore (β1 +⋯ + βn)
p ≡ βp1 +⋯ + βpn holds for all n ≥ 2

Claim 6 : For any α ∈ Z[ω], there exists a ∈ Z such that αp ≡ a mod p
For any α ∈ Z[ω], by Claim 3 and direct sequence after it, have

α = a0 + a1ω + a2ω
2 +⋯ + ap−2ωp−2 with all ai ∈ Z

Hence we have :

αp = (a0 + a1ω + a2ω
2
+⋯ + ap−2ωp−2)p

≡ ap0 + a
p
1ω

p
+ ap2ω

2p
+⋯ + app−2ω

(p−2)p mod p by the generalized result from Claim 5

= ap0 + a
p
1 + a

p
2 +⋯ + app−2 as ωi’s are pth roots of unity

Therefore we have αp ≡ a mod p with a = ap0 + a
p
1 + a

p
2 +⋯ + app−2 ∈ Z
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Now we introduce another lemma to prove Lamé’s Lemma, which is Kummer’s
Lemma:

If u is a unit in Z[ω] and ū is its complex conjugate, then u/ū is a power of ω

If all roots of monic polynomial f(x) have absolute value 1, then we have

f(x) = (x − 1)k(x + 1)l where k + l = n

Then the absolute value of the coefficient of xr is

∣
r

∑
i=0

(−1)k−i(
k

i
)(

l

r − i
) ∣ ≤

r

∑
i=0

∣ (−1)k−i(
k

i
)(

l

r − i
) ∣

≤
r

∑
i=0

∣ (−1)k−i(
k

i
) ∣ ⋅ ∣ (

l

r − i
) ∣

=
r

∑
i=0

(
k

i
)(

l

r − i
) = (

n

r
)

Therefore the coefficient of xr has absolute value ≤ (
n
r
)

Let α be an algebraic integer of degree n and α1 = α,α2,⋯, αn be the conjugates
Let f(x) be the minimal polynomial of α ∈ A. Hence have f(x) ∈ Z[x]
Consider also f(x) = (x − σ1(α))⋯(x − σn(α)) = (x − α1)⋯(x − αn)
Hence all roots of f(x) have absolute value 1
By the result from part (i), the coefficient of xr, say cr, is ≤ (

n
r
)

Also cr ∈ Z, thus there are only finitely many choices for cr
Let S be the set of such f(x) with degree n and any algebraic integer α of degree n

with absolute value 1 is a root of an element in S, i.e.

S = {f(x) ∈ Z[x] ∣ def f = n, f(α) = 0 for some α ∈ A with ∣σi(α)∣ = 1,∀1 ≤ i ≤ n}

Since each coefficient of xr,∀0 ≤ r ≤ n has only finitely many choices, this forces

∣S ∣ <∞

Since def f = n <∞, hence such f has at most n roots
Now S is a finite set of f with finitely many roots and α is one of those roots
It follows that there are only finitely many such α ∈ A, i.e. there are only finitely many

algebraic integers α of fixed degree n, all of whose conjugates (including α) have absolute
value 1 for a fixed n.

Let β = αs be a power of α, thus β ∈ Q[α], moreover β has degree ≤ n
Let α1 = α,α2,⋯, αn be the conjugates of α with embedding σ1,⋯, σn from Q[α] to C
Hence ∀1 ≤ i ≤ n, σi(α) = αi, moreover, it also sends αs to αsi
Thus αs1 = β,α

s
2,⋯, α

s
n are conjugates of β

Since deg β ≤ n, hence there are at most n conjugates of β
Hence all conjugates of αs are αs1 = β,α

s
2,⋯, α

s
n
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Note that the absolute value of αsi is 1s = 1 as if αi = r ⋅ e
iθ with absolute value ∣r∣ = 1,

then αsi = r
s ⋅ eisθ with absolute value ∣rs∣ = 1

Now any power β of α has degree ≤ n and all its conjugates have absolute value 1
By the result in part above, there are finitely many such power of α, then

∃ p, q ∈ N with p > q such that αp = αq

Therefore αp−q = 1 for some p − q ∈ N, i.e. α is a root of unity.
This means an algebraic integer α, all of whose conjugates (including α) have

absolute value 1, must be a root of unity.
Let σ ∶ C→ C be the complex conjugation, i.e. σ(ω) = ω̄ = ω−1

Hence we have σ ∈ Gal(Q(ω)/Q) ≅ (Z/pZ)
∗
, which is an abelian group

Hence for any τ ∈ Gal(Q(ω)/Q), it commutes with σ, hence we have

∣ τ(u/ū) ∣ = ∣ τ(u/σ(u)) ∣ = ∣ τ(u)/τ(σ(u)) ∣

= ∣ τ(u)/σ(τ(u)) ∣

= ∣ τ(u) ∣ / ∣σ(τ(u)) ∣

= ∣ τ(u) ∣ / ∣ τ(u) ∣ = 1

It follows that all conjugates of u/ū have absolute value 1.
Also note that u/ū is an algebraic integer as u is a unit in Z[ω]
By the result from above, u/ū is a root of unity
Recall that with p being an odd prime, the only roots of unity in Q[ω] are the 2p−th

root of unity, i.e. ±ωk for some k
Therefore u/ū = ±ωk for some k
Now suppose for contradiction that u/ū = −ωk, i.e. up = −ūp

By the result from Claim 6, there exists a ∈ Z such that

up ≡ a mod p

By the result from consequence of Claim 3,

ūp ≡ ā mod p

Hence we have

−ūp ≡ −ā ≡ −a mod p

Hence up = −ūp implies a ≡ −a mod p, i.e. 2a ≡ 0 mod p, which is p ∣ 2a
Since p is odd, this forces p ∣ a
Thus up ≡ a mod p implies p ∣ up

Which is a contradiction since up is a unit while p is not
Therefore in u/ū = ±ωk, only the + holds, i.e. u/ū is a power of ω.

Now back to our main proof of Lamé’s Lemma:

Claim 7 :With p ≥ 5, x + yω ≡ (x + yω−1)ωk mod p
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By the result of Claim 2 and the definition of congruencein Z[ω], we have

x + yω ≡ uαp mod p for some unit u ∈ Z[ω] and some α ∈ Z[ω] (3)

By the result of Claim 6, ∃a ∈ Z such that

αp ≡ a mod p (4)

Combing (3) &(4), we have :

x + yω ≡ ua mod p (5)

By Kummer’s Lemma, have

u = ūωk for some k ∈ Z (6)

Combing (5) & (6), we have

x + yω ≡ ūωka mod p (7)

By the result of Claim 5, taking the congruence of both sides of (5), we have

x + yω ≡ ua mod p (8)

x + yω−1 ≡ ūa mod p (9)

Combing (7) & (9), we have

x + yω ≡ ūωka ≡ (x + yω−1)ωk mod p

I.e., x + yω ≡ (x + yω−1)ωk mod p for some k ∈ Z

For k ∈ Z determined in Claim 7, we can write k = np + s for some 0 ≤ n,0 ≤ s < p
By the result of Claim 7, we have x + yω ≡ (x + yω−1)ωk mod p, i.e.

p ∣ ((x + yω) − (x + yω−1)ωk)

● When s = 0, i.e. k = np, have

(x + yω) − (x + yω−1)ωk = (x − xωnp) + y(ω − ωnp−1)

= y(ω − ωnp−1)

= y(ω − ωp−1) as ω(n−1)p is a pth roots of unity

= y(ω − 1 − ω − ω2
−⋯ − ωp−2) by the result of Claim 3

= y(−1 − ω2
− ω3

−⋯ − ωp−2)

Since p ∤ y by assumption, this forces

p ∣ (−1 − ω2 − ω3 −⋯ − ωp−2)

By the result of consequence after Claim 3, this leads to
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p ∣ (−1) mod p

Which contradicts the assumption that p ≥ 5
● When s = p − 1, i.e. k ≡ p − 1 mod p, have

(x + yω) − (x + yω−1)ωk = (x − xωnp+p−1) + y(ω − ωnp+p−1−1)

= (x − xωp−1) + yω − yωp−2 as ωnp is a pth roots of unity

= x(1 + 1 + ω +⋯ + ωp−2) + y(ω − ωp−2) by the result of Claim 3

= 2x + (x + y)ω + x(ω2
+⋯ + ωp−3) + (x − y)ωp−2

By the result of consequence after Claim 3, have :

p ∣ (2x), , p ∣ (x + y)

p ∣ x (10)

p ∣ (x − y)

But (10) contradicts the assumption that p ∤ x
● Hence 1 ≤ s ≤ p − 2

It follows that ((x + yω) − (x + yω−1)ωk) can be written in the form

((x + yω) − (x + yω−1)ωk) = x + yω + yωk−1 − xωk

= x + yω + yωnp+s−1 − xωnp+s

= x + yω + yωs−1 − xωs

= a0 + a1ω + a2ω
2
+⋯ + ap−2ωp−2 for some ai ∈ Z

Which by the result of consequence after Claim 3, the coefficient of ω0 and ω1 must be
divisible by p

But have p ∤ x and p ∤ y
So the coefficient of ω0 is not x and the coefficient of ω0 is not y
This forces {ωs−1, ωs} = {ω0, ω1}

Hence must have s − 1 = 0, s = 1
Therefore k ≡ 1 mod p

Hence we have

ωk = ω (11)

Combing (11) and the result of Claim 7, have

x + yω = (x + yω−1)ωk = (x + yω−1)ω = xω + y mod p

I.e., p ∣ ((x − y) + (x − y)ω)

By the result of (vii), have p ∣ (x − y)
Therefore x ≡ y mod p
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Up till now we get a statement saying with the assumption of Lamé’s Lemma, we
would have x ≡ y mod p

Since p > 3 is prime, thus odd, then have

xp + yp = zp ⇐⇒ xp + (−z)p = (−y)p

Apply the statement to (x,−z,−y), we have

x ≡ −z mod p

Thus 2xp ≡ xp + yp = zp ≡ (−x)p mod p, which gives

3xp ≡ 0 mod p

Hence p ∣ 3xp, which is a contradiction since p > 3 and p ∤ x.
Therefore we finished the proof of Lamé’s Lemma, under which circumstance, the

equation has no integer solution.

4. Discussion
Note that the assumption of Lamé’s Lemma that Z[ω] is a UFD is very important

since Z[ω] is not always UFD in fact. For example, when p = 23, Z[ω] is not a UFD. In
the proof above, it drops the assumption that Z[ω] is a UFD by using the properties of
principle ideal domain.


