A Step to Fermat's Last Theorem

Saiyue Lyu

This is a tiny essay about Lamé's Lemma and Kummer's Lemma using group theory to show a special case of Fermat's Last Theorem : When $\mathbb{Z}[\omega]=\left\{\sum_{i=1}^{p} a_{i} \omega^{i-1}\right\}$ is a unique factorization domain with p being a prime, the equation $x^{p}+y^{p}=z^{p}$ has no integer solution with $p+x y z$. This essay is also based on exercises in Marcus's Number Fields, which is the reference book for PMath 441/641 (Algebraic Number Theory) instructed by Professor Wentang Kuo in my 3A term at University of Waterloo.

For years Fermat's Last Theorem attracts mathematicians, which states that the Diophantine equation

$$
x^{n}+y^{n}=z^{n}
$$

has no nonzero integer solution (x, y, z) for $n>2$.

1. Fermat's Last Theorem for cases $n=1$

It is clear when $n=1, x+y=z$ has a set of integer solutions.

2. Fermat's Last Theorem for cases $n=2$

When $n=2$, we would like to find the integer solution of $x^{2}+y^{2}=z^{2}$
Up to scalar isomorphism, we may assume $\operatorname{gcd}(x, y, z)=1$
Define $\mathbb{Z}[i]=\{a+b i, a, b \in \mathbb{Z}\}$ to be the set of Galois integers, it is obvious that $\mathbb{Z}[i]$ is a Euclidean domain, thus a Principle Ideal Domain, a Unique Factorization Domain.

In $\mathbb{Z}[i]$, we have $x^{2}+y^{2}=(x+i y)(x-i y)=z^{2}$
Claim : $x+i y$ can be written as $u \cdot \alpha^{2}$ for some Galois integer α and Galois integer unit u (i.e. $\exists v \in \mathbb{Z}[i]$ such that $u v=1$)

From $(x+i y)(x-i y)=z^{2}$ and the unique factorization division of $\mathbb{Z}[i]$, it is sufficient to show that $(x+i y)$ and $(x-i y)$ are coprime, i.e. have no common factor. Since if they are coprime and their product is a square, then each of them must be a square).

We suppose for contradiction that Π is a common factor of $(x+i y)$ and $(x-i y)$.
To get the contradiction, we would like to show $\Pi \mid 1$, i.e. Π is a unit.
Since $\Pi \mid(x+i y)$ and $\Pi \mid(x-i y)$, we get

$$
\begin{aligned}
\Pi \mid(x+i y)+(x-i y) & \Rightarrow \Pi \mid 2 x \\
\Pi \mid(x+i y) \cdot(x-i y) & \Rightarrow \Pi \mid z^{2}
\end{aligned}
$$

Which gives us

$$
\Pi \mid \operatorname{gcd}\left(2 x, z^{2}\right)
$$

By assumption, we have $\operatorname{gcd}(x, y, z)=1$, thus $\operatorname{gcd}(x, z)=1$, hence we obtain as long as we prove $\operatorname{gcd}(2, z)=1$, we would have $\operatorname{gcd}\left(2 x, z^{2}\right)=1$

If $2 \mid z$, we can write $x=2 a+1, y=2 b+1, z=2 c$ for some $a, b, c \in \mathbb{Z}$, then we have

$$
x^{2}+y^{2}=z^{2} \Rightarrow 4 a^{2}+4 a+4 b^{2}+4 b+2=4 c^{2}
$$

But this is a contradiction since after modulo 4 , we have $2=0 \bmod 4$, hence we must have $2+z$. Therefore we have $(x+i y)$ and $(x-i y)$ are coprime.

Also consider the Galois integer unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$, hence we have

$$
\begin{aligned}
x+y i & =u \cdot(a+b i)^{2} \text { for some } a, b \in \mathbb{Z} \\
& =u \cdot\left(a^{2}-b^{2}+2 a b i\right)
\end{aligned}
$$

Hence we finally obtain the value set of x, y, z :

$$
\{x, y\}=\left\{ \pm\left(a^{2}-b^{2}\right) \pm 2 a b\right\}, z= \pm\left(a^{2} \pm b^{2}\right), a, b \in \mathbb{Z}
$$

3. Fermat's Last Theorem for cases $n=3$

When $n=3, x^{3}+y^{3}=z^{3}$ has no solution by direct proof

1. Fermat's Last Theorem for cases $n>3$

Consider when $n \geq 3$, the problem can be reduced to $n=p$, for p being a prime since if $p \mid n$ and $n \neq 2^{k}, x^{n}+y^{n}=z^{n} \Longleftrightarrow\left(x^{n / p}\right)^{p}+\left(y^{n / p}\right)^{p}=\left(z^{n / p}\right)^{p}$

Also note when $n=4$ (also the case for $p=2$), the equation has no integer solution, which is a direct consequence by the case when $n=2$.

So now consider the reduced problem when $p>3$. Define the p-th root of unit to be $\omega=e^{2 \pi i / p}$. At this stage, we only look at the case when $p+x y z$, which is the famous Lamé's Lemma :

Let $p>3$ be a prime. Assume $\mathbb{Z}[\omega]=\left\{a_{0}+a_{1} \omega+\cdots+a_{p-1} \omega^{p-1}\right\}$ is a Unique Factorization Domain (UFD). If $p+x y z$, then $x^{p}+y^{p}=z^{p}$ has no integer solutions.

We proceed by contradiction. Suppose that $x^{p}+y^{p}=z^{p}$ for some nonzero $x, y, z \in \mathbb{Z}$.
Considering that $x^{p}+y^{p}=(x+y)(x+y \omega)\left(x+y \omega^{2}\right) \cdots\left(x+y \omega^{p-1}\right)=z^{p}$
Let $y=-1$, we have

$$
\begin{aligned}
(x-1)(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{p-1}\right) & =x^{p}+(-1)^{p}=x^{p}-1 \text { as } p \text { is odd } \\
& =(x-1)\left(x^{p-1}+x^{p-2}+\cdots+x+1\right) \text { as } p \text { is odd }
\end{aligned}
$$

Here $x \neq 1$, otherwise $z^{p}=1^{p}+(-1)^{p}=0$ leads to $p \mid x y z$, hence have :

$$
(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{p-1}\right)=x^{p-1}+x^{p-2}+\cdots+x+1
$$

Now take $x=1$, we have :

$$
(1-\omega)\left(1-\omega^{2}\right) \cdots\left(1-\omega^{p-1}\right)=p
$$

Claim 1 : $x+y \omega=u \alpha^{p}$ for some unit $u \in \mathbb{Z}[\omega]$ and $\alpha \in \mathbb{Z}[\omega]$.
Assume Π is a prime element with $\Pi \mid(x+y \omega)$. And suppose for contradiction that $\Pi \mid\left(x+y \omega^{i}\right)$, for some $i=0$, or $2 \leq i \leq p-1$, i.e.

$$
\Pi \mid\left(x+y \omega^{i}\right)
$$

With the previous condition

$$
\Pi \mid(x+y \omega)
$$

By modular property, we have :

$$
\Pi \mid(x+y)(x+y \omega)\left(x+y \omega^{2}\right) \cdots\left(x+y \omega^{p-1}\right)=z^{p}
$$

This leads to : $\Pi \mid z$
On the other hand, since $\Pi \mid\left(x+y \omega^{i}\right)$ and $\Pi \mid(x+y \omega)$, have :

$$
\Pi\left|\left((x+y \omega)-\left(x+y \omega^{i}\right)\right) \Rightarrow \Pi\right| y \omega\left(1-\omega^{i-1}\right)
$$

Since $0 \leq i<p, i \neq 1$ by assumption
Then $\left(1-\omega^{i-1}\right)$ is one of the factors in the product $(1-\omega)\left(1-\omega^{2}\right) \cdots\left(1-\omega^{p-1}\right)=p$
Hence have $y\left(1-\omega^{i-1}\right) \mid y p$, then $\Pi \mid y \omega p$, thus $\Pi \mid y p$ as ω is a unit
Since z and $y p$ are co-prime, then $\exists m, n \in \mathbb{Z}$ such that $z m+y p n=1$
Consider $\Pi|z, \Pi| y p$ and $m, n \in \mathbb{Z}$, hence $\Pi|(z m+y p n) \Rightarrow \Pi| 1$
This contradicting the fact that Π is a prime element.
Therefore $\Pi+\left(x+y \omega^{i}\right), \forall i=0$ or $2 \leq i \leq p-1$
Since if $\Pi \mid(x+y \omega)$, then $\Pi+\left(x+y \omega^{i}\right), \forall i=0$, or $2 \leq i \leq p-1$
Then $(x+y \omega)$ and $\prod_{i \neq 1}^{0 \leq i \leq p-1}\left(x+y \omega^{i}\right)$ are relatively prime $\forall i=0$, or $2 \leq i \leq p-1$
Note that their product is a p th power and $\mathbb{Z}[\omega]$ is a UFD by assumption.
Since no irreducible factor will appear in $(x+y \omega)$ and $\prod_{i \neq 1}^{0 \leq i \leq p-1}\left(x+y \omega^{i}\right)$
Then each factor appearing in $(x+y \omega)$ must appear a multiple of p times.
I.e. must have $x+y \omega$ is a p th power, up to unit multiple.

Therefore $x+y \omega=u \alpha^{p}$ for some unit $u \in \mathbb{Z}[\omega]$ and $\alpha \in \mathbb{Z}[\omega]$
Now consider dropping the assumption that $\mathbb{Z}[\omega]$ is a UFD but using the fact that ideals factors uniquely (up to order) into prime ideals.

Claim 2: The principal ideal $\langle x+y \omega\rangle=I^{p}$ for some ideal I.
Suppose for contradiction that Δ is a common prime ideal factor of $\langle x+y \omega\rangle$ and $\left\langle x+y \omega^{i}\right\rangle$, for some $i=0,2 \cdots p-1$. By equation (1^{\prime}), also have

$$
\Delta \mid<z>^{p}
$$

Since Δ is prime, this forces $\Delta \mid\langle z\rangle$, i.e.

$$
\begin{equation*}
\langle z>\subset \Delta \tag{1}
\end{equation*}
$$

Since $\Delta|\langle x+y \omega\rangle, \Delta|\left\langle x+y \omega^{i}\right\rangle$, then $\Delta \mid\left(\langle x+y \omega\rangle+\left\langle x+y \omega^{i}\right\rangle\right)$, i.e.

$$
\begin{aligned}
\Delta \supset\left(\langle x+y \omega\rangle+\left\langle x+y \omega^{i}\right\rangle\right) & =\left\langle x+y \omega, x+y \omega^{i}\right\rangle \\
& =\left\langle x+y \omega,(x+y \omega)-\left(x+y \omega^{i}\right)\right\rangle \\
& =\left\langle x+y \omega, y \omega\left(1-\omega^{i-1}\right)\right\rangle \\
& \left.\supset<y \omega\left(1-\omega^{i-1}\right)\right\rangle=\langle y\rangle\left\langle 1-\omega^{i-1}\right\rangle
\end{aligned}
$$

Since $0 \leq i \leq p-1, i \neq 1$ by assumption, then have

$$
\begin{gathered}
\left\langle 1-\omega^{i-1}\right\rangle \mid\langle 1-\omega\rangle\left\langle 1-\omega^{2}\right\rangle \cdots\left\langle 1-\omega^{p-1}\right\rangle=\langle p\rangle \\
\langle y\rangle\left\langle 1-\omega^{i-1}\right\rangle \mid\langle y\rangle\langle p\rangle=\langle y p\rangle \Longrightarrow\langle y\rangle\left\langle 1-\omega^{i-1}\right\rangle \supset\langle y p\rangle
\end{gathered}
$$

Hence have :

$$
\begin{equation*}
\Delta \supset<y p> \tag{2}
\end{equation*}
$$

Combining (1) and (2), have

$$
\langle z\rangle+\langle y p\rangle \subset \Delta
$$

Since z and $y p$ are relatively prime, then $\exists m, n \in \mathbb{Z}$ such that $z m+y p n=1$, hence

$$
1 \epsilon\langle z\rangle+\langle y p\rangle \subset \Delta
$$

Which is a contradiction since Δ can not contain 1 as a proper ideal
Therefore $\langle x+y \omega\rangle$ has no common prime ideal factor with $\left\langle x+y \omega^{i}\right\rangle, \forall i=0,2, \cdots, p-1$
Then, $\langle x+y \omega\rangle$ and $\left.\prod_{i \neq 1}^{0 \leq i \leq p-1}<x+y \omega^{i}\right\rangle$ have no common prime ideal factors.
By the Unique Prime Ideal Factorization applied to equation (1^{\prime}),
Each factor appearing in $\langle x+y \omega\rangle$ must appear a multiple of p times
Note also factors appearing in $\langle x+y \omega\rangle$ must not appear in $\prod_{i \neq 1}^{0 \leq i \leq p-1}\left\langle x+y \omega^{i}\right\rangle$
Therefore $\langle x+y \omega\rangle=I^{p}$ for some ideal I.
Claim 3 : Every element of $\mathbb{Q}[\omega]$ is uniquely representable in the form

$$
a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} \quad \forall 0 \leq i \leq p-2, a_{i} \in \mathbb{Q}
$$

When $\omega=e^{2 \pi i / p}$, we have :

$$
\begin{aligned}
\Phi_{p}(\omega) & =\omega^{p-1}+\omega^{p-2}+\cdots+\omega+1 \\
& =\frac{\omega^{p}-1}{\omega-1} \quad \text { as } \omega \neq 1 \\
& =\frac{\left(e^{2 \pi i / p}\right)^{p}-1}{\omega-1} \\
& =\frac{e^{2 \pi i}-1}{\omega-1} \\
& =0
\end{aligned}
$$

Hence ω is a root of the cyclotomic polynomial $\Phi_{p}(x)$. Moreover,

$$
\begin{aligned}
\Phi_{p}(x+1) & =\frac{(x+1)^{p}-1}{(x+1)-1} \\
& =\frac{(x+1)^{p}-1}{x} \\
& =x^{p-1}+\binom{p}{1} x^{p-2}+\binom{p}{2} x^{p-3}+\cdots+\binom{p}{p-2} x+\binom{p}{p-1}
\end{aligned}
$$

Using Eisenstein's Criterion with p as $p+1, p^{2}+\binom{p}{p-1}, p \left\lvert\,\binom{ p}{i}\right., \forall 1 \leq i \leq p-1$
Hence $\Phi_{p}(x+1) \in \mathbb{Q}[x]$ is irreducible, thus so is $\Phi_{p}(x) \in \mathbb{Q}[x]$
Therefore $\Phi_{p}(x)$ is the minimal polynomial for ω over \mathbb{Q}
By definition, every element in $\mathbb{Q}[\omega]$ can be wrriten as the form

$$
\alpha_{0}+\alpha_{1} \omega+\alpha_{2} \omega^{2}+\cdots+\alpha_{n} \omega^{n} \text { for some } n \text { and } \alpha_{i} \in \mathbb{Q}, \forall i
$$

When $n=p-2$, we are done immediately.
When $n<p-2$, we are done by setting $\alpha_{j}=0 \in \mathbb{Q}, \forall n+1 \leq j \leq p-2$
Hence WLOG, we assume $n \geq p-1$
Since $\Phi_{p}(\omega)=\omega^{p-1}+\omega^{p-2}+\cdots+\omega+1=0$ by above, have

$$
\omega^{p-1}=-\left(\omega^{p-2}+\cdots+\omega+1\right)
$$

Then any element in $\mathbb{Q}[\omega]$ can be written as

$$
\begin{aligned}
\alpha_{0}+\alpha_{\omega}+\alpha_{2} \omega^{2}+\cdots+\alpha_{n} \omega^{n} & =\alpha_{0}+\alpha_{1} \omega+\alpha_{2} \omega^{2}+\cdots+\alpha_{n-1} \omega^{n-1}+\alpha_{n} \omega^{n-p+1} \omega^{p-1} \\
& =\alpha_{0}+\alpha_{1} \omega+\alpha_{2} \omega^{2}+\cdots+\alpha_{n-1} \omega^{n-1}-\alpha_{n} \omega^{n-p+1}\left(\omega^{p-2}+\cdots+\omega+1\right) \\
& =\beta_{0}+\beta_{1} \omega+\beta_{2} \omega^{2}+\cdots+\beta_{n-1} \omega^{n-1}
\end{aligned}
$$

where

$$
\beta_{i}= \begin{cases}\alpha_{i}, & \text { for } 0 \leq i<n-p+1 \\ \alpha_{i}-\alpha_{n}, & \text { for } n-p+1 \leq i \leq n-1\end{cases}
$$

I.e., $\alpha_{0}+\alpha_{\omega}+\alpha_{2} \omega^{2}+\cdots+\alpha_{n} \omega^{n}$ can be written in the form $\beta_{0}+\beta_{1} \omega+\beta_{2} \omega^{2}+\cdots+\beta_{n-1} \omega^{n-1}$ By iteration (or induction), $\alpha_{0}+\alpha_{\omega}+\alpha_{2} \omega^{2}+\cdots+\alpha_{n} \omega^{n}$ can be written in the form

$$
a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} \text { for some } a_{i} \in \mathbb{Q}, \forall 0 \leq i \leq p-2
$$

Now it remains to show the uniqueness of this representation.
Suppose that some element in $\mathbb{Q}[\omega]$ achieves 2 representation, i.e.

$$
\begin{gathered}
a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2}=b_{0}+b_{1} \omega+b_{2} \omega^{2}+\cdots+b_{p-2} \omega^{p-2} \text { for some } a_{i}, b_{i} \in \mathbb{Q} \\
\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) \omega+\left(a_{2}-b_{2}\right) \omega^{2}+\cdots+\left(a_{p-2}-b_{p-2}\right) \omega^{p-2}=0
\end{gathered}
$$

Hence ω is a root of $f(x) \in \mathbb{Q}[x]$ where

$$
f(x)=\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) x+\left(a_{2}-b_{2}\right) x^{2}+\cdots+\left(a_{p-2}-b_{p-2}\right) x^{p-2}
$$

Since $\Phi_{p}(x)$ is the minimal polynomial of ω over \mathbb{Q} by above, then have

$$
\begin{gathered}
\Phi_{p}(x) \mid f(x) \\
\left(1+x+\cdots+x^{p-2}+x^{p-1}\right) \mid\left(\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) x+\left(a_{2}-b_{2}\right) x^{2}+\cdots+\left(a_{p-2}-b_{p-2}\right) x^{p-2}\right)
\end{gathered}
$$

This forces $f(x)=0$ as $\operatorname{deg} \Phi_{p}=p-1>p-2=\operatorname{deg} f$
Hence $a_{i}=b_{i}, \forall 0 \leq i \leq p-2$, i.e. the representation is unique.
Therefore every element in $\mathbb{Q}[\omega]$ is uniquely representable in the form

$$
a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} \quad \forall 0 \leq i \leq p-2, a_{i} \in \mathbb{Q}
$$

By the similar steps in Claim 3,
we can show that every element in $\mathbb{Z}[\omega]$ can be written in the form

$$
a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} \quad \forall 0 \leq i \leq p-2, a_{i} \in \mathbb{Z}
$$

If $p \mid \alpha$, i.e. $\alpha=p \cdot \beta$ for some $\beta=b_{0}+b_{1} \omega+b_{2} \omega^{2}+\cdots+b_{p-2} \omega^{p-2} \in \mathbb{Z}[\omega]$, then

$$
\begin{aligned}
\alpha=a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} & =p \beta \\
& =p\left(b_{0}+b_{1} \omega+b_{2} \omega^{2}+\cdots+b_{p-2} \omega^{p-2}\right) \\
& =p b_{0}+p b_{1} \omega+p b_{2} \omega^{2}+\cdots+p b_{p-2} \omega^{p-2}
\end{aligned}
$$

Since the representation of α is unique by the result from Claim 3
Then $a_{i}=p b_{i}, \forall 0 \leq i \leq p-2$
Therefore $\forall 0 \leq i \leq p-2, p \mid a_{i}$

Now define congruence $\bmod p$ for $\beta, \gamma \in \mathbb{Z}[\omega]$ as follows:

$$
\beta \equiv \gamma \bmod p \Longleftrightarrow \beta-\gamma=p \delta \text { for some } \delta \in \mathbb{Z}[\omega]
$$

In terms of the language of ideal, this is congruence mod the principal ideal $p \mathbb{Z}[\omega]$
Claim 4 :If $\beta \equiv \gamma$, then $\bar{\beta} \equiv \bar{\gamma}$, where the bar denotes complex conjugation.
By definition of congruence in $\mathbb{Z}[\omega]$, since $\beta \equiv \gamma$, then $\beta-\gamma=p \delta$ for some $\delta \in \mathbb{Z}[\omega]$
Take the conjugate of both sides, we have :

$$
\begin{aligned}
& \overline{\beta-\gamma}=\overline{p \delta} \\
& \bar{\beta}-\bar{\gamma}=\bar{p} \bar{\delta} \\
& \bar{\beta}-\bar{\gamma}=p \bar{\delta}
\end{aligned}
$$

Also note that

$$
\bar{\omega}=e^{2 \bar{\pi} / p}=e^{-2 \pi i / p}=e^{-2 \pi i / p+2 \pi i}=e^{(p-1) 2 \pi i / p}=\left(e^{2 \pi i / p}\right)^{p-1}=\omega^{p-1}
$$

By the iteration procedure in Claim 3,
We have that ω^{p-1} can be written in the form $\beta_{0}+\beta_{1} \omega+\beta_{2} \omega^{2}+\cdots+\beta_{n-1} \omega^{n-1}$

Hence $\bar{\omega} \in \mathbb{Z}[\omega]$
Similarly in Claim 3, $\delta \in \mathbb{Z}[\omega]$ can be written in the form $a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2}$ It follows that $\bar{\delta} \in \mathbb{Z}[\omega]$, i.e. $\bar{\beta} \equiv \bar{\gamma} \bmod p$ by definition

Claim 5 : $(\beta+\gamma)^{p} \equiv \beta^{p}+\gamma^{p} \bmod p$
By definition, it suffices to show that

$$
(\beta+\gamma)^{p}-\left(\beta^{p}+\gamma^{p}\right)=p \delta \text { for some } \delta \in \mathbb{Z}[\omega]
$$

By Binomial Theorem, we have

$$
\begin{aligned}
(\beta+\gamma)^{p}-\left(\beta^{p}+\gamma^{p}\right) & =\sum_{k=1}^{p-1}\binom{p}{k} \beta^{k} \gamma^{p-k} \\
& =\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} \beta^{k} \gamma^{p-k}
\end{aligned}
$$

Since $p \mid p!,, p+k!(p-k)!$ for all $1 \leq k \leq p-1$, we have $p \left\lvert\,\binom{ p}{k}\right.$ for all $1 \leq k \leq p-1$, i.e.

$$
(\beta+\gamma)^{p}-\left(\beta^{p}+\gamma^{p}\right)=p \cdot \sum_{k=1}^{p-1} \frac{(p-1)!}{k!(p-k)!} \beta^{k} \gamma^{p-k} \text { where } \sum_{k=1}^{p-1} \frac{(p-1)!}{k!(p-k)!} \beta^{k} \gamma^{p-k} \in \mathbb{Z}[\omega]
$$

Therefore $(\beta+\gamma)^{p} \equiv \beta^{p}+\gamma^{p} \bmod p$
The generalization of this is $\left(\beta_{1}+\cdots+\beta_{n}\right)^{p} \equiv \beta_{1}^{p}+\cdots+\beta_{n}^{p}$ for all $n \geq 2$
To show this, we proceed by induction on n.
We have proven that the case when $n=2$ holds.
Assume we have the congruence equation for given n, i.e.

$$
\left(\beta_{1}+\cdots+\beta_{n}\right)^{p} \equiv \beta_{1}^{p}+\cdots+\beta_{n}^{p}
$$

Then we consider the case for $n+1$:

$$
\begin{aligned}
\left(\beta_{1}+\cdots+\beta_{n}+\beta_{n+1}\right)^{p} & \equiv\left(\beta_{1}+\cdots+\beta_{n}\right)^{p}+\beta_{n+1}^{p} \text { by the case when } n=2 \\
& \equiv \beta_{1}^{p}+\cdots+\beta_{n}^{p}+\beta_{n+1}^{p} \quad \text { by assumption of case } n
\end{aligned}
$$

Therefore $\left(\beta_{1}+\cdots+\beta_{n}\right)^{p} \equiv \beta_{1}^{p}+\cdots+\beta_{n}^{p}$ holds for all $n \geq 2$

Claim 6 : For any $\alpha \in \mathbb{Z}[\omega]$, there exists $a \in \mathbb{Z}$ such that $\alpha^{p} \equiv a \bmod p$
For any $\alpha \in \mathbb{Z}[\omega]$, by Claim 3 and direct sequence after it, have

$$
\alpha=a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} \text { with all } a_{i} \in \mathbb{Z}
$$

Hence we have :

$$
\begin{aligned}
\alpha^{p} & =\left(a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2}\right)^{p} & & \\
& \equiv a_{0}^{p}+a_{1}^{p} \omega^{p}+a_{2}^{p} \omega^{2 p}+\cdots+a_{p-2}^{p} \omega^{(p-2) p} & \bmod p & \\
& =a_{0}^{p}+a_{1}^{p}+a_{2}^{p}+\cdots+a_{p-2}^{p} & & \text { by the generalized result from Claim } 5 \\
& & & \text { as } \omega^{i} \text { s are } p \text { th roots of unity }
\end{aligned}
$$

Therefore we have $\alpha^{p} \equiv a \bmod p$ with $a=a_{0}^{p}+a_{1}^{p}+a_{2}^{p}+\cdots+a_{p-2}^{p} \in \mathbb{Z}$

Now we introduce another lemma to prove Lamé's Lemma, which is Kummer's Lemma:

If u is a unit in $\mathbb{Z}[\omega]$ and \bar{u} is its complex conjugate, then u / \bar{u} is a power of ω If all roots of monic polynomial $f(x)$ have absolute value 1 , then we have

$$
f(x)=(x-1)^{k}(x+1)^{l} \text { where } k+l=n
$$

Then the absolute value of the coefficient of x^{r} is

$$
\begin{aligned}
\left|\sum_{i=0}^{r}(-1)^{k-i}\binom{k}{i}\binom{l}{r-i}\right| & \leq \sum_{i=0}^{r}\left|(-1)^{k-i}\binom{k}{i}\binom{l}{r-i}\right| \\
& \leq \sum_{i=0}^{r}\left|(-1)^{k-i}\binom{k}{i}\right| \cdot\left|\binom{l}{r-i}\right| \\
& =\sum_{i=0}^{r}\binom{k}{i}\binom{l}{r-i}=\binom{n}{r}
\end{aligned}
$$

Therefore the coefficient of x^{r} has absolute value $\leq\binom{ n}{r}$
Let α be an algebraic integer of degree n and $\alpha_{1}=\alpha, \alpha_{2}, \cdots, \alpha_{n}$ be the conjugates
Let $f(x)$ be the minimal polynomial of $\alpha \in \mathbb{A}$. Hence have $f(x) \in \mathbb{Z}[x]$
Consider also $f(x)=\left(x-\sigma_{1}(\alpha)\right) \cdots\left(x-\sigma_{n}(\alpha)\right)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$
Hence all roots of $f(x)$ have absolute value 1
By the result from part (i), the coefficient of x^{r}, say c_{r}, is $\leq\binom{ n}{r}$
Also $c_{r} \in \mathbb{Z}$, thus there are only finitely many choices for c_{r}
Let S be the set of such $f(x)$ with degree n and any algebraic integer α of degree n with absolute value 1 is a root of an element in S, i.e.

$$
S=\left\{f(x) \in \mathbb{Z}[x] \mid \operatorname{def} f=n, f(\alpha)=0 \text { for some } \alpha \in \mathbb{A} \text { with }\left|\sigma_{i}(\alpha)\right|=1, \forall 1 \leq i \leq n\right\}
$$

Since each coefficient of $x^{r}, \forall 0 \leq r \leq n$ has only finitely many choices, this forces

$$
|S|<\infty
$$

Since $\operatorname{def} f=n<\infty$, hence such f has at most n roots
Now S is a finite set of f with finitely many roots and α is one of those roots
It follows that there are only finitely many such $\alpha \in \mathbb{A}$, i.e. there are only finitely many algebraic integers α of fixed degree n, all of whose conjugates (including α) have absolute value 1 for a fixed n.

Let $\beta=\alpha^{s}$ be a power of α, thus $\beta \in \mathbb{Q}[\alpha]$, moreover β has degree $\leq n$
Let $\alpha_{1}=\alpha, \alpha_{2}, \cdots, \alpha_{n}$ be the conjugates of α with embedding $\sigma_{1}, \cdots, \sigma_{n}$ from $\mathbb{Q}[\alpha]$ to \mathbb{C}
Hence $\forall 1 \leq i \leq n, \sigma_{i}(\alpha)=\alpha_{i}$, moreover, it also sends α^{s} to α_{i}^{s}
Thus $\alpha_{1}^{s}=\beta, \alpha_{2}^{s}, \cdots, \alpha_{n}^{s}$ are conjugates of β
Since $\operatorname{deg} \beta \leq n$, hence there are at most n conjugates of β
Hence all conjugates of α^{s} are $\alpha_{1}^{s}=\beta, \alpha_{2}^{s}, \cdots, \alpha_{n}^{s}$

Note that the absolute value of α_{i}^{s} is $1^{s}=1$ as if $\alpha_{i}=r \cdot e^{i \theta}$ with absolute value $|r|=1$, then $\alpha_{i}^{s}=r^{s} \cdot e^{i s \theta}$ with absolute value $\left|r^{s}\right|=1$

Now any power β of α has degree $\leq n$ and all its conjugates have absolute value 1
By the result in part above, there are finitely many such power of α, then

$$
\exists p, q \in \mathbb{N} \text { with } p>q \text { such that } \alpha^{p}=\alpha^{q}
$$

Therefore $\alpha^{p-q}=1$ for some $p-q \in \mathbb{N}$, i.e. α is a root of unity.
This means an algebraic integer α, all of whose conjugates (including α) have absolute value 1 , must be a root of unity.

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be the complex conjugation, i.e. $\sigma(\omega)=\bar{\omega}=\omega^{-1}$
Hence we have $\sigma \in \operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q}) \cong(\mathbb{Z} / p \mathbb{Z})^{*}$, which is an abelian group
Hence for any $\tau \in \operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q})$, it commutes with σ, hence we have

$$
\begin{aligned}
|\tau(u / \bar{u})|=|\tau(u / \sigma(u))| & =|\tau(u) / \tau(\sigma(u))| \\
& =|\tau(u) / \sigma(\tau(u))| \\
& =|\tau(u)| /|\sigma(\tau(u))| \\
& =|\tau(u)| /|\tau(u)|=1
\end{aligned}
$$

It follows that all conjugates of u / \bar{u} have absolute value 1 .
Also note that u / \bar{u} is an algebraic integer as u is a unit in $\mathbb{Z}[\omega]$
By the result from above, u / \bar{u} is a root of unity
Recall that with p being an odd prime, the only roots of unity in $\mathbb{Q}[\omega]$ are the $2 p$-th root of unity, i.e. $\pm \omega^{k}$ for some k

Therefore $u / \bar{u}= \pm \omega^{k}$ for some k
Now suppose for contradiction that $u / \bar{u}=-\omega^{k}$, i.e. $u^{p}=-\bar{u}^{p}$
By the result from Claim 6, there exists $a \in \mathbb{Z}$ such that

$$
u^{p} \equiv a \bmod p
$$

By the result from consequence of Claim 3,

$$
\bar{u}^{p} \equiv \bar{a} \bmod p
$$

Hence we have

$$
-\bar{u}^{p} \equiv-\bar{a} \equiv-a \bmod p
$$

Hence $u^{p}=-\bar{u}^{p}$ implies $a \equiv-a \bmod p$, i.e. $2 a \equiv 0 \bmod p$, which is $p \mid 2 a$
Since p is odd, this forces $p \mid a$
Thus $u^{p} \equiv a \bmod p$ implies $p \mid u^{p}$
Which is a contradiction since u^{p} is a unit while p is not
Therefore in $u / \bar{u}= \pm \omega^{k}$, only the + holds, i.e. u / \bar{u} is a power of ω.

Now back to our main proof of Lamé's Lemma:
Claim 7 :With $p \geq 5, x+y \omega \equiv\left(x+y \omega^{-1}\right) \omega^{k} \bmod p$

By the result of Claim 2 and the definition of congruencein $\mathbb{Z}[\omega]$, we have

$$
\begin{equation*}
x+y \omega \equiv u \alpha^{p} \quad \bmod p \quad \text { for some unit } u \in \mathbb{Z}[\omega] \text { and some } \alpha \in \mathbb{Z}[\omega] \tag{3}
\end{equation*}
$$

By the result of Claim 6, $\exists a \in \mathbb{Z}$ such that

$$
\begin{equation*}
\alpha^{p} \equiv a \quad \bmod p \tag{4}
\end{equation*}
$$

Combing (3) \& (4), we have :

$$
\begin{equation*}
x+y \omega \equiv u a \quad \bmod p \tag{5}
\end{equation*}
$$

By Kummer's Lemma, have

$$
\begin{equation*}
u=\bar{u} \omega^{k} \text { for some } k \in \mathbb{Z} \tag{6}
\end{equation*}
$$

Combing (5) \& (6), we have

$$
\begin{equation*}
x+y \omega \equiv \bar{u} \omega^{k} a \quad \bmod p \tag{7}
\end{equation*}
$$

By the result of Claim 5, taking the congruence of both sides of (5), we have

$$
\begin{array}{rr}
\overline{x+y \omega} \equiv \overline{u a} & \bmod p \\
x+y \omega^{-1} \equiv \bar{u} a & \bmod p \tag{9}
\end{array}
$$

Combing (7) \& (9), we have

$$
x+y \omega \equiv \bar{u} \omega^{k} a \equiv\left(x+y \omega^{-1}\right) \omega^{k} \quad \bmod p
$$

I.e., $x+y \omega \equiv\left(x+y \omega^{-1}\right) \omega^{k} \bmod p$ for some $k \in \mathbb{Z}$

For $k \in \mathbb{Z}$ determined in Claim 7, we can write $k=n p+s$ for some $0 \leq n, 0 \leq s<p$ By the result of Claim 7, we have $x+y \omega \equiv\left(x+y \omega^{-1}\right) \omega^{k} \bmod p$, i.e.

$$
p \mid\left((x+y \omega)-\left(x+y \omega^{-1}\right) \omega^{k}\right)
$$

- When $s=0$, i.e. $k=n p$, have

$$
\begin{array}{rlrl}
(x+y \omega)-\left(x+y \omega^{-1}\right) \omega^{k} & =\left(x-x \omega^{n p}\right)+y\left(\omega-\omega^{n p-1}\right) & \\
& =y\left(\omega-\omega^{n p-1}\right) & \\
& =y\left(\omega-\omega^{p-1}\right) & & \text { as } \omega^{(n-1) p} \text { is a } p \text { th roots of unity } \\
& =y\left(\omega-1-\omega-\omega^{2}-\cdots-\omega^{p-2}\right) \quad \text { by the result of Claim 3 } \\
& =y\left(-1-\omega^{2}-\omega^{3}-\cdots-\omega^{p-2}\right) & &
\end{array}
$$

Since $p+y$ by assumption, this forces

$$
p \mid\left(-1-\omega^{2}-\omega^{3}-\cdots-\omega^{p-2}\right)
$$

By the result of consequence after Claim 3, this leads to

$$
p \mid(-1) \bmod p
$$

Which contradicts the assumption that $p \geq 5$

- When $s=p-1$, i.e. $k \equiv p-1 \bmod p$, have

$$
\begin{aligned}
(x+y \omega)-\left(x+y \omega^{-1}\right) \omega^{k} & =\left(x-x \omega^{n p+p-1}\right)+y\left(\omega-\omega^{n p+p-1-1}\right) \\
& =\left(x-x \omega^{p-1}\right)+y \omega-y \omega^{p-2} \quad \text { as } \omega^{n p} \text { is a } p \text { th roots of unity } \\
& =x\left(1+1+\omega+\cdots+\omega^{p-2}\right)+y\left(\omega-\omega^{p-2}\right) \quad \text { by the result of Claim 3 } \\
& =2 x+(x+y) \omega+x\left(\omega^{2}+\cdots+\omega^{p-3}\right)+(x-y) \omega^{p-2}
\end{aligned}
$$

By the result of consequence after Claim 3, have :

$$
\begin{gather*}
p|(2 x),, p|(x+y) \\
p \mid x \tag{10}\\
p \mid(x-y)
\end{gather*}
$$

But (10) contradicts the assumption that $p+x$

- Hence $1 \leq s \leq p-2$

It follows that $\left((x+y \omega)-\left(x+y \omega^{-1}\right) \omega^{k}\right)$ can be written in the form

$$
\begin{aligned}
\left((x+y \omega)-\left(x+y \omega^{-1}\right) \omega^{k}\right) & =x+y \omega+y \omega^{k-1}-x \omega^{k} \\
& =x+y \omega+y \omega^{n p+s-1}-x \omega^{n p+s} \\
& =x+y \omega+y \omega^{s-1}-x \omega^{s} \\
& =a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{p-2} \omega^{p-2} \text { for some } a_{i} \in \mathbb{Z}
\end{aligned}
$$

Which by the result of consequence after Claim 3, the coefficient of ω^{0} and ω^{1} must be divisible by p

But have $p+x$ and $p+y$
So the coefficient of ω^{0} is not x and the coefficient of ω^{0} is not y
This forces $\left\{\omega^{s-1}, \omega^{s}\right\}=\left\{\omega^{0}, \omega^{1}\right\}$
Hence must have $s-1=0, s=1$
Therefore $k \equiv 1 \bmod p$

Hence we have

$$
\begin{equation*}
\omega^{k}=\omega \tag{11}
\end{equation*}
$$

Combing (11) and the result of Claim 7, have

$$
x+y \omega=\left(x+y \omega^{-1}\right) \omega^{k}=\left(x+y \omega^{-1}\right) \omega=x \omega+y \bmod p
$$

I.e., $p \mid((x-y)+(x-y) \omega)$

By the result of (vii), have $p \mid(x-y)$
Therefore $x \equiv y \bmod p$

Up till now we get a statement saying with the assumption of Lamés Lemma, we would have $x \equiv y \bmod p$

Since $p>3$ is prime, thus odd, then have

$$
x^{p}+y^{p}=z^{p} \Longleftrightarrow x^{p}+(-z)^{p}=(-y)^{p}
$$

Apply the statement to $(x,-z,-y)$, we have

$$
x \equiv-z \quad \bmod p
$$

Thus $2 x^{p} \equiv x^{p}+y^{p}=z^{p} \equiv(-x)^{p} \bmod p$, which gives

$$
3 x^{p} \equiv 0 \quad \bmod p
$$

Hence $p \mid 3 x^{p}$, which is a contradiction since $p>3$ and $p+x$.
Therefore we finished the proof of Lamés Lemma, under which circumstance, the equation has no integer solution.

4. Discussion

Note that the assumption of Lamé's Lemma that $\mathbb{Z}[\omega]$ is a UFD is very important since $\mathbb{Z}[\omega]$ is not always UFD in fact. For example, when $p=23, \mathbb{Z}[\omega]$ is not a UFD. In the proof above, it drops the assumption that $\mathbb{Z}[\omega]$ is a UFD by using the properties of principle ideal domain.

