A Step to Fermat’s Last Theorem
Saiyue Lyu

This is a tiny essay about Lamé’s Lemma and Kummer’s Lemma using group theory
to show a special case of Fermat’s Last Theorem : When Z[w] = {¥¥ | a;w’™'} is a unique
factorization domain with p being a prime, the equation x? + 4” = 2P has no integer solution
with p + xyz. This essay is also based on exercises in Marcus’s Number Fields, which is
the reference book for PMath 441/641 (Algebraic Number Theory) instructed by Professor
Wentang Kuo in my 3A term at University of Waterloo.

For years Fermat’s Last Theorem attracts mathematicians, which states that the Dio-
phantine equation

xn+ynzzn

has no nonzero integer solution (z,y, z) for n > 2.
1. Fermat’s Last Theorem for cases n =1

It is clear when n =1, x +y = z has a set of integer solutions.

2. Fermat’s Last Theorem for cases n =2

When n = 2, we would like to find the integer solution of z? + y? = 22

Up to scalar isomorphism, we may assume ged(z,y,z) =1

Define Z[i] = {a + bi,a,b € Z} to be the set of Galois integers, it is obvious that Z[i] is
a FEuclidean domain, thus a Principle Ideal Domain, a Unique Factorization Domain.

In Z[i], we have 2% + y? = (z + iy) (z —iy) = 22

Claim : z +iy can be written as u-a? for some Galois integer o and Galois integer unit u
(i.e. v e Z[i] such that uv = 1)

From (z +iy)(z - iy) = 22 and the unique factorization division of Z[4], it is sufficient
to show that (x +iy) and (z —iy) are coprime, i.e. have no common factor. Since if they
are coprime and their product is a square, then each of them must be a square).

We suppose for contradiction that II is a common factor of (z +iy) and (x —iy).

To get the contradiction, we would like to show IT|1, i.e. II is a unit.

Since II|(z + iy) and I|(z - iy), we get

| (z +iy) + (z —iy) = |2z
| (z +iy) - (x —iy) = I0| 2

Which gives us
II| ged(2z, 2%)

By assumption, we have ged(zx,y,z) = 1, thus ged(z, z) = 1, hence we obtain as long as
we prove ged(2, 2) = 1, we would have ged(2z,2%) = 1



If 2|z, we can write z = 2a+ 1,y = 2b+ 1,z = 2¢ for some a,b,c € Z, then we have
224y’ =27 = 4a® +da+ 40 + 4b+ 2 = 4¢3

But this is a contradiction since after modulo 4, we have 2 = 0 mod 4, hence we must
have 2 4 z. Therefore we have (x +iy) and (z —1iy) are coprime.

Also consider the Galois integer unit of Z[i] are 1 and +i, hence we have
z+yi=u-(a+bi)’for some a,beZ
= u-(a® - b* + 2abi)
Hence we finally obtain the value set of x,y, 2 :

{z,y} = {£(a® - b?) £ 2ab} , z = £(a* £ b*) ,a,b e Z

3. Fermat’s Last Theorem for cases n =3
When n =3, 2% + 3% = 22 has no solution by direct proof
1. Fermat’s Last Theorem for cases n > 3

Consider when n > 3, the problem can be reduced to n = p, for p being a prime since if
p|nand n+#2F 2" +y" = 2" — (2P + (y/P)P = (2"P)P

Also note when n = 4 (also the case for p = 2), the equation has no integer solution,
which is a direct consequence by the case when n = 2.

So now consider the reduced problem when p > 3. Define the p—th root of unit to be
w = e2™/P_ At this stage, we only look at the case when p + zyz, which is the famous
Lamé’s Lemma :

Let p > 3 be a prime. Assume Z[w] = {ag + a1w + - + ap_1wP'} is a Unique
Factorization Domain (UFD). If p + xyz, then 2+ = 2P has no integer solutions.

We proceed by contradiction. Suppose that zP + yP = 2P for some nonzero x,y, z € Z.
Considering that 2P + 4 = (z + y)(z + yw) (z + yw?)-(z + ywP™1) = 2P
Let y = -1, we have

(z-1)(z-w)(z-w?)(r-wP ) =aP+(-1)P =2P -1 as p is odd

=(z-1)(@P +2P 2+ +2+1) as pis odd
Here x # 1, otherwise 2P = 17 + (=1)P = 0 leads to p | xyz, hence have :
(z-w)(@x-w?)(z-wP =P e 2P s+ 1
Now take x = 1, we have :

(1-w)(1-w?)(1-w ) =p



Claim 1 : =+ yw = ua? for some unit v € Z[w] and « € Z[w].
Assume II is a prime element with IT | (z + yw). And suppose for contradiction that
IT| (z + yw'), for some i =0, or 2<i<p-1, ie.

| (z+yw')
With the previous condition
I (z + yw)
By modular property, we have :
| (z+y)(z+yw)(z+yw?)(z+ywPt) = 2P

This leads to : II| z ‘
On the other hand, since IT | (z + yw') and II | (x + yw), have :

IT| ((x+yw) - (a:+ywi)) = II | yw(1 —wi )

Since 0 <7< p,i#+ 1 by assumption

Then (1 -w®!) is one of the factors in the product (1 —w)(1 —w?)-(1-wP ) =p
Hence have y(1 —w® 1) | yp, then IT | ywp, thus II | yp as w is a unit

Since z and yp are co-prime, then Im,n € Z such that zm +ypn =1

Consider IT| z,II | yp and m,n € Z, hence II | (zm +ypn) =11 |1

This contradicting the fact that II is a prime element.

Therefore IT + (z +yw'),Vi=0or 2<i<p-1

Since if TT | (x + yw), then IT + (2 + yw'),Vi =0, or 2<i<p -1

0<i<p-1 )
Then (z +yw) and [] (z+yw') are relatively prime Vi=0, or 2<i<p-1
il
Note that their product is a pth power and Z[w] is a UFD by assumption.

0<i<p-1 )
Since no irreducible factor will appear in (z +yw) and [] (z+yw")
i1
Then each factor appearing in (z + yw) must appear a multiple of p times.
I.e. must have = + yw is a pth power, up to unit multiple.

Therefore x + yw = ua? for some unit v € Z[w] and « € Z[w]

Now consider dropping the assumption that Z[w] is a UFD but using the fact that ideals
factors uniquely (up to order) into prime ideals.

Claim 2 : The principal ideal < z + yw >= I? for some ideal I.
Suppose for contradiction that A is a common prime ideal factor of < z + yw > and
<z +yw' >, for some i =0,2---p—1. By equation (1’), also have

Al<z>P
Since A is prime, this forces A |< z >, i.e.

<z>cA (1)



Since A [<z+yw >, A<z +yw’ >, then A| (<z+yw >+ <z +yw' >), ie.

Ad (Kz+yw>+<z+yw' >) =<z +yw,z+yw' >
=<z +yw, (z+yw) - (z+yw') >
=<z +yw,yw(l-w)>
S<yw(l-w™)>=<y><l-wt>
Since 0 <7 <p-1,7+ 1 by assumption, then have

<l-wls|<l-w><l-w?> - <l-wPl>=<p>
<y><l-wls|<y><p>=<yp> = <y><l-wl>o<yp>

Hence have :
A><yp> (2)
Combining (1) and (2), have
<z>+ <yp>cA
Since z and yp are relatively prime, then 3m,n € Z such that zm + ypn = 1, hence
le<z> +<yp>cA

Which is a contradiction since A can not contain 1 as a proper ideal
Therefore < x +yw > has no common prime ideal factor with < z+yw* >, Vi=0,2,---,p—1
0<i<p-1 )
Then, <z + yw > and H < x+yw' > have no common prime ideal factors.
i*1
By the Unique Prime Ideal Factorization applied to equation (1’),
Each factor appearing in < x + yw > must appear a multiple of p times
0<i<p-1 )
Note also factors appearing in < x + yw > must not appear in H <z +yw' >
i1
Therefore < x + yw >= IP for some ideal I.

Claim 3 : Every element of Q[w] is uniquely representable in the form
a0+a1w+a2w2+~-+ap,2wp_2 VO<i<p-2,a;€Q

When w = e2™/P_ we have :

Dp(w) =wP w2t
wP -1
= asw# 1
w-1
(627ri/p)p_1

w-1




Hence w is a root of the cyclotomic polynomial ®,(z). Moreover,

C(z+1)P -1
<I>p(x+1)—m
_ (x+1)P -1

:a:p‘l+(p)xp_2+(p)xp_3+---+( P )x+( P )
1 2 p-2 p—-1

Using Eisenstein’s Criterion with p as p + 1,p% + (pfl),p | (ZZ), Vi<i<p-1
Hence ®,(z + 1) € Q[x] is irreducible, thus so is ®,(z) € Q[z]
Therefore ®,(z) is the minimal polynomial for w over Q

By definition, every element in Q[w] can be wrriten as the form

ap + aqw + aaw? + - + apw™ for some n and a; € Q, Vi

When n =p -2, we are done immediately.

When n < p -2, we are done by setting a; =0€Q,Vn+1<j<p-2
Hence WLOG, we assume n >p—1

Since ®,(w) = wP™ +wP 2+ +w+1=0 by above, have

WPl (WP 2+t w 1)

Then any element in Q[w] can be written as

2 2 -1 —p+l, p-1
QQ + Qi + QoW + -+ apw” = g + QW + QW + A+ W F o PP

=g+ 1w+ agw? + o+ 1w = W PN WP ek w 1)

2 -1
= Bo + frw + fow™ + o+ + Bpw”

where
Q;, forO<i<n-p+1
Bi = .
o;—ap, forn-p+1<i<n-1

2 1

Le., ag+ay +asw’ + -+ aw™ can be written in the form Gy + Siw + ngz +eoot Bpoiw™”
2

By iteration (or induction), ag + @, + aow” + -+ + aw™ can be written in the form
ap + 1w + agw? + -+ + ap_gwp’2 for some a; € Q,V0<i<p-2

Now it remains to show the uniqueness of this representation.
Suppose that some element in Q[w] achieves 2 representation, i.e.

ap + a1w + agw? + - + ap_gwp’2 =bo + biw + bow? + -+ + bp_gwp’2 for some a;,b; € Q

(ao — bo) + (a1 - bl)w + (a2 - bg)u)Z + e+ (ap_g - bp_2)wp—2 =0

Hence w is a root of f(x) € Q[z] where

f(x) = (a0 = bo) + (a1 —b1)x + (ag = b)x” + -+ (ap-p — by_2)aP™>



Since ®,(z) is the minimal polynomial of w over Q by above, then have

Oy(z) | f(2)

(L+z+-+aP 2+ 2P| ((ao —bo) + (a1 = b1)x + (ag — ba)z* + -+ + (ap-g - bp,g)wp‘Q)

This forces f(z) =0 as deg®p,=p-1>p-2=degf
Hence a; = b;, V0 <i <p-2, i.e. the representation is unique.

Therefore every element in Q[w] is uniquely representable in the form

a0+a1w+a2w2+---+ap_2wp’2 VO<i<p-2,a;€Q

By the similar steps in Claim 3,
we can show that every element in Z[w] can be written in the form

a0+a1w+a2w2+---+ap_2wp_2 VO<i<p-2,a;€Z
If p | a,iea=p-B for some B =by+bjw +bow? + -+ + by_owP™2 € Z[w], then
_ 2 p—2 _
a=ag+aiw+ aw’ + -+ apow’ T =pfh

= p(bo + blw + b2w2 + -+ bp_zwp_2)

= pbo + pbyw + pbaw? + -+ + pby_owP >

Since the representation of « is unique by the result from Claim 3
Then a; =pb;, V0<i<p-2
Therefore VO<i<p-2,p | a;

Now define congruence mod p for 3,7 € Z[w] as follows:
B=~ modp <= -~ =pd for some § € Z[w]
In terms of the language of ideal, this is congruence mod the principal ideal pZ[w]
Claim 4 :If 5 = v, then 3 = 7, where the bar denotes complex conjugation.

By definition of congruence in Z[w], since § =+, then 8 — = pd for some § € Z[w]
Take the conjugate of both sides, we have :

B-v=pd
B-7=pd
B -7 =pd

Also note that

o = e2milp = e—27rz/p _ e—27rz/p+27rz _ e(p—l)Zm/p _ (627rz/p)p—1 _ wp—l

By the iteration procedure in Claim 3,
We have that wP™! can be written in the form By + fiw + Bow? + -+ + Bp_1w™ !



Hence @ € Z[w]
Similarly in Claim 3, 0 € Z[w] can be written in the form ag + a;jw + asw

It follows that 6 € Z[w], i.e. 3=4 mod p by definition

2 -2
+et ap_gw?

Claim 5 : (8+~v)P =67 ++P mod p
By definition, it suffices to show that

(B+~)P - (8P ++P) =pd for some ¢ € Z[w]

By Binomial Theorem, we have

p—-1

(B+)P = (B +47) = (p)ﬁkvp"“
k=1 k
p-1 !

B kzl Kl(p—k)!

Bk:,yp—k
Since p | pl, ,p+ kl(p-k)! for all 1 <k <p-1, we have p | (f,:) forall1<k<p-1,ie.
(B+7)P - (B +17) =p- Z 2= gpk here Z Mﬁ"“v”‘k € Z[w]
T  H(p— b))
Therefore (8+ )P = P ++P mod p
The generalization of this is (1 + -+ ,)F = B + -+ (5, for all n. > 2
To show this, we proceed by induction on n.

We have proven that the case when n = 2 holds.
Assume we have the congruence equation for given n, i.e.

(Bi + v+ Ba) = B 4o+
Then we consider the case for n+1 :

(Br+ -+ Bn+ Bns1)’ = (B1+ -+ + B)P + B, by the case when n =2
=p0+--+p5+p., by assumption of case n

Therefore (1 + -+ Bp)P = B + -+ S5 holds for all n > 2

Claim 6 : For any « € Z[w], there exists a € Z such that o =a mod p
For any a € Z[w], by Claim 3 and direct sequence after it, have

a=ap+aw + agw? + - + ap_gwp‘Z with all a; € Z

Hence we have :
a? = (ap + ajw + asw? + -+ + ap,gwp_Q)p
= af) + ajw? + abw? + - + ag_Qw(p_2)p mod p by the generalized result from Claim 5

_ P P DD i .
=aptay T ay et a, as w'’s are pth roots of unity

Therefore we have o = a mod p with a = af +a} +ab + - + ai_z eZ



Now we introduce another lemma to prove Lamé’s Lemma, which is Kummer’s
Lemma:

If u is a unit in Z[w] and @ is its complex conjugate, then u/u is a power of w

If all roots of monic polynomial f(z) have absolute value 1, then we have
f(x)=(z-1)*(z+1) where k+1=n

Then the absolute value of the coefficient of " is

[z () =5l ()]
<1 H ()]

20 -C)
Therefore the coefficient of 2™ has absolute value < (Z)

Let a be an algebraic integer of degree n and a1 = o, ao, -+, i, be the conjugates

Let f(x) be the minimal polynomial of « € A. Hence have f(x) € Z[z]

Consider also f(z) = (.CE -0 (a))(a: —op(a)) = (z—a1)(z - ay)

Hence all roots of f(z) have absolute value 1

By the result from part (i), the coefficient of a", say ¢;, is < (?)

Also ¢, € Z, thus there are only finitely many choices for ¢,

Let S be the set of such f(z) with degree n and any algebraic integer « of degree n
with absolute value 1 is a root of an element in S, i.e.

S={f(z)eZ[z] | def f =n, f(a) =0 for some o € A with |o;(a)|=1,V1<i<n}
Since each coefficient of ", V0 < r < n has only finitely many choices, this forces
|5'| < 00

Since def f =n < oo, hence such f has at most n roots

Now S is a finite set of f with finitely many roots and « is one of those roots

It follows that there are only finitely many such « € A, i.e. there are only finitely many
algebraic integers «v of fixed degree n, all of whose conjugates (including «) have absolute
value 1 for a fixed n.

Let 8 = a® be a power of a, thus € Q[«], moreover § has degree < n

Let a1 = a, g, -++, vy, be the conjugates of a with embedding o1, -+, 0, from Q[«] to C

Hence V1 <i<n, 0;(a) = oy, moreover, it also sends o to o

Thus af = §,a3, -, a;, are conjugates of 3

Since deg 8 < n, hence there are at most n conjugates of

Hence all conjugates of o® are af = 3,03, , o,



Note that the absolute value of of is 1% = 1 as if a; = - € with absolute value |r| = 1,
then of = r* - €% with absolute value |r®| = 1

Now any power [ of a has degree <n and all its conjugates have absolute value 1

By the result in part above, there are finitely many such power of o, then

1 p,q € N with p > ¢ such that o = o4

Therefore aP™ =1 for some p—q € N, i.e. « is a root of unity.

This means an algebraic integer «, all of whose conjugates (including «) have
absolute value 1, must be a root of unity.

Let 0 : C - C be the complex conjugation, i.e. o(w) = =w"

Hence we have o € Gal(@(w)/@) = (Z/pZ)*, which is an abelian group

Hence for any 7 € Gal(Q(w)/Q), it commutes with o, hence we have

[m(w/w) | =|7(u/o(u)|=|r(u)/m(c(w))]
=[7(uw)/o(r(w))]
=) |/|o(r(w))]
=T [/Ir(u)] =1

It follows that all conjugates of u/u have absolute value 1.

Also note that u/u is an algebraic integer as u is a unit in Z[w]

By the result from above, u/u is a root of unity

Recall that with p being an odd prime, the only roots of unity in Q[w] are the 2p—th
root of unity, i.e. +w® for some k

Therefore u/@ = +w* for some k

Now suppose for contradiction that u/u = -w"®, i.e. uP = —uP

By the result from Claim 6, there exists a € Z such that

1

k

uP =a mod p
By the result from consequence of Claim 3,
uP =a mod p
Hence we have
—uP =-a=-a mod p

Hence uP = —u? implies a = —a mod p, i.e. 2a =0 mod p, which is p | 2a
Since p is odd, this forces p|a

Thus u? = a mod p implies p | uP

Which is a contradiction since uP is a unit while p is not

Therefore in u/a = +w*, only the + holds, i.e. u/a is a power of w.

Now back to our main proof of Lamé’s Lemma:

Claim 7 :With p>5, z + yw = (2 + yw Hw® mod p
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By the result of Claim 2 and the definition of congruencein Z[w], we have
x+yw=ua? mod p for some unit u € Z[w] and some « € Z[w] (3)

By the result of Claim 6, Ja € Z such that

o =a modp (4)

Combing (3) &(4), we have :
T+yw=ua mod p (5)

By Kummer’s Lemma, have
u = aw® for some k € Z (6)

Combing (5) & (6), we have
T +yw = aw®a mod p (7)

By the result of Claim 5, taking the congruence of both sides of (5), we have

r+yw=ua mod p (8)

z+yw l=ta modp (9)

Combing (7) & (9), we have

k mod p

& +yw = awha = (z+yw Hw
Le., z+yw = (z+yw Hwk mod p for some k € Z

For k € Z determined in Claim 7, we can write k = np+ s for some 0<n,0<s<p

By the result of Claim 7, we have x + yw = (z + yw‘l)wk mod p, i.e.
p | ((z+yw) - (2 +yo ")

e When s =0, i.e. k=np, have

(z +yw) — (z+yw Dk = (2 - 20™) + y(w - ™)
= Yo"
= y(w-wP1) as w™ P is a pth roots of unity
—glw-1-w-w? - —wP?) by the result of Claim 3
=y(-1-w?-w® - —wP?)

Since p + y by assumption, this forces

pl(-1-w? =0 = — i 2)

By the result of consequence after Claim 3, this leads to



11

p | (-1) modp

Which contradicts the assumption that p > 5
e When s=p-1,ie. k=p-1 mod p, have

(z+yw) - (z+yw ) = (& - 2w™P) 4 y(w - PP
= (2 - 2P + yw — ywP 2 as w'? is a pth roots of unity
—z(l+l+w+-+wP ) +y(w-wh?) by the result of Claim 3

2

=2+ (z+y)w+ (W + - +wP3) + (2 - y)wP >

By the result of consequence after Claim 3, have :

pl(2z), ,p|(z+y)
pla (10)

pl(x-y)

But (10) contradicts the assumption that p + x
e Hence 1 <s<p-2
It follows that ((x +yw) - (z+ yw‘l)wk) can be written in the form

T+ Yyw + ywk_l - zwh

((x +yw) - (z+ yw_l)wk)

np+s—1 np+s

T+ Yyw + yw - Tw

T+ yw + yw' T - 2wt

2 -2
=ap+ aw + agw” + -+ + ap_ow? * for some a; € Z

Which by the result of consequence after Claim 3, the coefficient of w” and w' must be
divisible by p

But have p + x and p + y

So the coefficient of w? is not x and the coefficient of w? is not y

This forces {w* ™!, w®} = {w? w!}

Hence must have s—-1=0,s=1

Therefore k=1 mod p

Hence we have
WP = w (11)
Combing (11) and the result of Claim 7, have

z+yw=(z+yw Db = (z+yw Hw=zw+y modp

Le., p [ ((z=y) + (z - y)w)
By the result of (vii), have p | (z-vy)
Therefore =y mod p
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Up till now we get a statement saying with the assumption of Lamé’s Lemma, we
would have z =y mod p

Since p > 3 is prime, thus odd, then have
P +yP = 2P — 2P+ (=2)P = (-y)?
Apply the statement to (z,-z,-y), we have
=-z modp
Thus 22P = 2P + yP = 2P = (-2)P mod p, which gives
32 =0 mod p

Hence p | 32P, which is a contradiction since p >3 and p + x.
Therefore we finished the proof of Lamé’s Lemma, under which circumstance, the
equation has no integer solution.

4. Discussion

Note that the assumption of Lamé’s Lemma that Z[w] is a UFD is very important
since Z[w] is not always UFD in fact. For example, when p = 23, Z[w] is not a UFD. In
the proof above, it drops the assumption that Z[w] is a UFD by using the properties of
principle ideal domain.



