
1

An Introduction Of Conjugate Gradient Method

Saiyue Lyu

Conjugate gradient method is an algorithm to solve the linear system equation Ax = b for
a positive definite matrix A. This report summarizes the motivation, theoretical analysis,
detailed algorithm and the implementation of conjugate gradient method based on CO367
I took in Fall 2018 at UWaterloo.

1. Motivation

Definition 1.1. A symmetric matrix A ∈ Rn×n is said to be positive definite if

hTAh > 0,∀h ∈ Rn/{0}.

It is easy to see that a square real matrix A is positive definite if and only if its eigenvalues
are all positive.

For any positive definite matrix A ∈ Rn×n and any vector b ∈ Rn, we want to find the
solution x ∈ Rn for the system of linear equation Ax = b.

One of the methods to solve this system is to use Gauss-Jordan Elimination. When A
is invertible, the system has one unique solution x = A−1b and when A is not invertible,
the system has no solution or has a solution set. In both cases Gauss-Jordan Elimination
requires a complexity of O(n3) and the matrix multiplication A−1b has arithmetic complex-
ity of O(n2), so in total, solving this system requires a complexity of O(n3). Unless this
matrix A is well-structured, this method will be computationally expensive. Due to this
difficulty, we want to transfer this question to a more solvable problem instead of solving
this linear system directly.

Note that if A is positive definite, then all of its eigenvalues are positive and 0 is not
an eigenvalue of A, this means the system Ax = 0 has no non-trivial solution, i.e. A is
invertible. So under the assumption that A is positive definite, we want to find the unique
solution of Ax = b but not computing A−1b directly.

2. Optimization Conditions

Consider the optimization problem with the quadratic objective function

min
x

h(x) = 1

2
xTAx − bTx + c,

where A ∈ Rn×n , b ∈ Rn , c ∈ R. I will show next that if A is positive definite, then solving
this optimization problem is equivalent to solving the system Ax = b.

First we introduce the basic definitions and results in optimization :

Definition 2.1. We say that x∗ is a local minimizer of f if



2

∃ δ > 0 such that f(x∗) ≤ f(x),∀x ∈ Bδ(x∗).
We say that x∗ is a strict local minimizer of f if

∃ δ > 0 such that f(x∗) < f(x),∀x ∈ (Bδ(x∗)/x∗).
We say that x∗ is a global minimizer if

f(x∗) ≤ f(x),∀x ∈ Rn.

We say that x∗ is a critical or stationary point if

∇f(x) = 0.

Note that all local minimizers are critical points, but not all critical points are local
minimizers.

Theorem 2.1 (First Order Necessary Conditions For Optimality). Let f ∶ Rn → R
be C1-smooth. If x∗ is a local minimizer, then ∇f(x∗) = 0.

Proof. Let Bδ(x∗) be such that f(x∗) ≤ f(x),∀x ∈ Bδ(x∗), i.e.

∀i,∀∣k∣ < δ, f(x∗ + k ⋅ ei) − f(x∗) ≥ 0,

which gives

⎧⎪⎪⎨⎪⎪⎩

f(x∗+k⋅ei)−f(x
∗
)

k ≥ 0 if k > 0
f(x∗+k⋅ei)−f(x

∗
)

k ≤ 0 if k < 0.

Since f ∈ C1, then limk→0
f(x∗+k⋅ei)

k exists.

If both ≥ 0,≤ 0 inequalities hold, then the equality holds, thus ∂f
∂xi
(x∗) = 0,∀i.

Therefore ∇f(x∗) = 0. ∎

Theorem 2.2 (Second Order Necessary Conditions For Local Optimality). Let
f ∶ Rn → R be C2-smooth. If x∗ is a local minimizer, then ∇f(x∗) = 0 and ∇2f(x∗) is
positive semi-definite.

Proof. Let z ∈ Rn/{0}, we need to prove zT∇2f(x∗)z ≥ 0.
Let Bδ(x∗) be such that f(x∗) ≤ f(x),∀x ∈ Bδ(x∗).
Let y ∶= k ⋅ z

∣∣z∣∣ with 0 < k < δ, then we have :

f(x∗ + y) − f(x∗) ≥ 0

f(x∗) + yT∇f(x∗) + 1

2
yT∇2f(x∗)y + φ(x) − f(x∗) ≥ 0 where lim

y→0,y≠0

φ(y)
∣∣y∣∣ = 0.

By 1st order condition, we have yT∇f(x∗) = 0, hence we have :

1

2

k2

∣∣z∣∣2 z
T∇2f(x∗)z + φ(h z

∣∣z∣∣ ) ≥ 0

zT∇2f(x∗)z + 2∣∣z∣∣2 1

k2
φ(k z

∣∣z∣∣ ) ≥ 0.

Take the limit when h→ 0, by Talor’s theorem, we have :

lim
k→0,k≠0

φ(k ⋅ z
∣∣z∣∣)

k2
= 0.

Therefore we have zT∇2f(x∗)z ≥ 0. ∎



3

Theorem 2.3 (Second Order Sufficient Conditions For Local Optimality). Let
f ∶ Rn → R ∈ C2(Bδ(x∗)), x∗ ∈ R, δ > 0. If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then
x∗ is a strict local minimizer.

Proof. By Talor’s 2nd order equation, ∀y ∈ Bδ(x∗), have :

f(x∗ + y) = f(x∗) + yT∇f(x∗) + 1
2y

T∇2f(x∗)y + φ(x) where limy→0,y≠0
φ(y)
∣∣y∣∣ = 0.

Let 0 < λ1 < ⋯ < λn be the positive eigenvalues of ∇2f(x∗).
By the definition of limit, have

∃r > 0 ∶ ∀y ∈ Br(x∗), ∣
φ(x)
∣∣y∣∣2 ∣ ≤

λ1
4
⇐⇒ ∣φ(x)∣ ≤ ∣∣y∣∣2λ1

4
.

Note that,

∣∣y∣∣2 ⋅ λ1 ≤ yT∇2f(x∗)y ≤ ∣∣y∣∣2 ⋅ λn.

Also by assumption, ∇f(x∗) = 0, then we have :

f(x∗ + y) = f(x∗) + 1

2
yT∇2f(x∗)y + φ(y)

≥ f(x∗) + 1

2
∣∣y∣∣2λ1 − ∣∣y∣∣2

λ1
4

= f(x∗) + 1

4
∣∣y∣∣2 ⋅ λ1

> f(x∗) for all y ∈ Br(x∗)/{0}.

Therefore x∗ is a strict local minimizer over Br(x∗). ∎

With above theorems, we obtain the following summary for optimality conditions :

⎧⎪⎪⎨⎪⎪⎩

∇f(x∗) = 0

∇2f(x∗) positive definite
⇒ x∗ is a strict local minimizer

⇒ x∗ is a local minimizer ⇒
⎧⎪⎪⎨⎪⎪⎩

∇f(x∗) = 0

∇2f(x∗) positive semi − definite
.

Lemma 2.4. The gradient of h(x) is ∇h(x) = Ax−b and the hessian of h(x) is ∇2h(x) = A.



4

Proof.

∂

∂xk
bTx = bk

∇bTx = b
∂

∂xk
xTAx = ∂

∂xk
∑
i,j

Aijxixj

= ∂

∂xk
(∑
j≠k

Akjxkxj +∑
i≠k

Aikxixk +Akkx2k)

(as A is symmetric) = ∂

∂xk
(∑
j≠k

Akjxkxj +∑
i≠k

Akixixk +Akkx2k)

= ∂

∂xk
(2∑

j≠k

Akjxkxj +Akkx2k)

= 2∑
j≠k

Akjxj + 2Akkxk = 2∑
j

Akjxj

= kth row of 2Ax

∇xTAx = 2Ax

Similarly, we can get ∇2h(x) = ∇(Ax − b) = A.
Therefore ∇h(x) = Ax − b and ∇2h(x) = A. ∎

Theorem 2.5. The quadratic function h(x) = 1
2x

TAx− bTx+ c with positive definite A has
a unique global minimizer.

Proof. Since A is positive definite, then A−1 exists. There is a unique critical point (i.e.
point where ∇h = 0) x∗ = A−1b. Since ∇2h(x∗) = A is positive definite, then x∗ is a local
minimizer. Note that for any y ∈ Rn, have:

x∗
T

Ay = (x∗TAy)T = yTATx∗ = yTAx∗. (1)

Hence have:

h(x∗ + y) = 1

2
(x∗ + y)TA(x∗ + y) − bT (x∗ + y) + c

= 1

2
x∗

T

Ax∗ + 1

2
x∗

T

Ay + 1

2
yTAx∗ + 1

2
yTAh − bTx∗ − bT y + c

= (1
2
x∗

T

Ax∗ − bTx∗ + c) + (1
2
x∗

T

Ay + 1

2
yTAx∗) + 1

2
yTAy − bT y

= h(x∗) + yTAx∗ + 1

2
yTAy − bT y by (1)

= q(x∗) + yTA(A−1b) + 1

2
yTAy − bT y

= q(x∗) + yT b + 1

2
yTAy − bT y

= q(x∗) + 1

2
yTAy

≥ q(x∗).

Therefore x∗ is a global minimizer of h(x). ∎



5

Then using the summary for optimality conditions, we can derive the following theorem:

Theorem 2.6. The solution of the optimization problem is exactly the solution of Ax = b,
i.e. x∗ is the global minimizer of min

x
h(x) if and only if x∗ is the solution of Ax = b.

Proof. x∗ is the solution of Ax = b.
⇔ ∇h(x∗) = 0.
⇔ x∗ is a local minimizer (since ∇2h(x) is positive definite).
⇔ x∗ is the unique global minimizer (by theorem(2.5)). ∎

Therefore solving Ax = b can be turned into solving the optimization problem min
x
h(x),

which leads to the well-known Conjugate Gradient Method.

3. Direction and Step Size of Conjugate Gradient Method

To find a feasible direction pi and moves the iterate xi along the direction pi to make
the value of objective function to decrease, we have the following algorithm:

input : x0
for i = 0,1,⋯, do

Choose direction pi;
Choose step size αi > 0;
xi+1 = xi + αi ⋅ pi

end
Algorithm 1: Algorithm for Feasible Direction

Direction pi determines the direction that the iterate xi should move along and step size
αi determines how far it moves away from the current xi, to select pi, we use the 1st order
Taylor expansion:

h(xi+1) = h(xi − αipi) = h(xi) − αipTi ∇h(xi) + φ(αipi) with lim
αi→0

φ(αipi)
∣∣αipi∣∣

= 0.

What we want is h(xi+1) < h(xi), i.e. αip
T
i ∇h(xi) < 0 and φ(αipi) is small enough,

hence this forces pTi ∇h(xi) < 0 and αi being small, to choose the direction pi, we use the
Steepest Descent Method, staring from xi, h(x) deceases fastest along the direction of
opposite of gradient of xi, i.e. let pi = −∇h(xi).

To determine the step size αi, we will use the method of Line Search:

Definition 3.1. The error ei = xi − x∗ is the vector showing how far the iterated solution
now from the solution.

Definition 3.2. The residual ri = b−Axi is the vector showing how far the iterated bi now
from the value of b.

Note that ri = b −Axi = −∇h(xi) = pi = Ax∗ −Axi = −Aei, which gives an idea that we
can think of residual as the direction of the steepest descent.



6

By Theorem 2.1, αi minimizes h(xi) when the directional derivative d
dαi
h(xi) = 0 :

0 = d

dαi
h(xi + αipi) = ∇h(xi + αipi)T ⋅ pi

= ∇h(xi + αipi)T ri = (b −A(xi + αipi))
T
ri

= (b −A(xi + αiri))
T
ri = (b −Axi)T ri − αi(Ari)T ri

αi =
(b −Axi)T ri
(Ari)T ri

= rTi ri

rTi Ari
.

And to update ri+1 and pi+1, we calculate :

ri+1 = b −Axi+1 = b −A(xi + αipi) = ri − αiApi
pi+1 = −∇h(xi+1).

Now we have the direction and step size with iterated relation:

pi = −∇h(xi) = −Axi + bi = ri

pi+1 = ri+1 +
rTi+1ri+1

rTi ri
pi

αi =
rTi ri

rTi Ari

ri+1 = ri − αiApi.

Therefore now we can get the algorithm for Conjugate Gradient Method.

4. Conjugate Gradient Method Algorithm

input : x0
output: x∗

r0 = b;
p0 = r0;
for i = 0,1,⋯, do

αi = rTi ri
pTi Api

;

xi+1 = xi + αipi;
ri+1 = ri − αiApi;
pi+1 = ri+1 + rTi+1ri+1

rTi ri
pi

end
Algorithm 2: Algorithm for Conjugate Gradient Method

To implement this algorithm in python, first we need to generate an arbitrary symmetric
positive definite matrix, to do so, let T be any nonsingular matrix, then A = T ⋅ T T will be
positive definite if A is square. The Python code is below:



7

from scipy import random, linalg

import numpy as np

import matplotlib.pyplot as plt

matrixSize = 10

T = np.random.normal(size=[matrixSize,matrixSize])

A = np.dot(T,T.transpose())

b = np.ones(matrixSize)

x0=np.zeros(matrixSize)

if np.all(np.linalg.eigvals(A) > 0) :

print (’the input matrix is positive definite\n’)

else :

print (’the input matrix is not positive definite\n’)

detA = np.linalg.det(A)

print(detA)

x = x0

epsilon=1e-10 # tolerence

r = b # residual

p = r # direction

old = np.dot(np.transpose(r), r)

iter = 0

error = np.zeros(matrixSize)

for i in range(len(b)):

Ap = np.dot(A,p)

alpha = old / np.dot(np.transpose(p), Ap) # step size

x = x + alpha * p # update gradient descent

r = r - alpha * Ap # update residual incrementally

new = np.dot(np.transpose(r), r)

if np.sqrt(new) < epsilon:

break

p = r + (new / old) * p # determine new direction

old = new

error[i] = pow(np.linalg.norm(np.dot(A, x) - b),2)

iter = iter +1

sol=x

print("solution is found in %s iterations" % iter)

finalError = error[iter-1]

print(’final error is\n’, finalError)



8

plt.imshow(A)

plt.colorbar()

plt.show()

plt.plot(error , ’bo’)

plt.show()

Which gives the graphs of error when the matrix size is 10 by 10, 50 by 50 and 100 by
100 :

(a) A 10 by 10 matrix (b) Error for 10 by 10

(c) A 50 by 50 matrix (d) Error for 50 by 50

(e) A 100 by 100 matrix (f) Error for 100 by 100

Figure 1: Errors of Conjugate Gradient Method



9

5. Discussion of Implementation

Theoretically the algorithm will work for any symmetric positive definite matrix, how-
ever when the eigenvalues of matrix A is very close to zero but not equal to zero, the result
becomes very messy, the error will no longer behave a decreasing converging trend.

There are several other ways to generate ”good enough” positive semidefinite matrix,
here by ”good enough”, it means the eigenvalues of the matrix are very far from 0. The
first thought is to adjust T by letting Tnew = a + b ⋅ T with a, b are large positive integers,
which will shifts the eigenvalues of A such that they are not close to 0. Another way is to
think about Spectral Decomposition of A, first generates series of strict positive number
that are not close to 0 to be the eigenvalues, then generate the corresponding orthogonal

matrix. Note, to make A symmetric, we can always do Anew = AT
+A
2 .

After several testing, it is found that the program always stops within n iteration, this
leads to the discussion of convergence.

6. Convergence of Conjugate Gradient Method

Theorem 6.1. For any ei, it can be expressed as a linear combination of eigenvectors of
A.

Proof. Recall the fact that if A is symmetric, then the n eigenvectors of A are orthogonal,
say v1,⋯, vn. Since we can scale the eigenvectors arbitrarily, WLOG, we can assume ∣∣vj ∣∣2 =
1,∀j. Hence have :

ei =
n

∑
j=1

βjvj .

∎

Hence we obtain the following equations :

ri = −Aei = −
n

∑
j=1

βjλjvj

∣∣ri∣∣22 =
n

∑
j=1

β2jλ
2
j

rTi Ari =
n

∑
j=1

β2jλ
3
j

∣∣ei∣∣22 =
n

∑
j=1

β2

eTi Aei = (
n

∑
j=1

βjv
T
j )(

n

∑
j=1

βjλjvj) =
n

∑
j=1

β2jλj .



10

Hence we finally get :

xi+1 = xi + αi ⋅ pi

ei+1 = ei +
rTi ri

rTi Ari
⋅ ri

= ei +
∑nj=1 β2jλ2j
∑nj=1 β2jλ3j

⋅ ri

= ei +
∑nj=1 β2jλ2j
∑nj=1 β2jλ3j

⋅ (−Aei).

Theorem 6.2. Given any starting point, the conjugate gradient algorithm will achieve the
minimizer x∗ within n iterations.

Proof. When ei is one of the eigenvector of A with eigenvalue λ, then ri = −Aei = −λei is
also an eigenvectors, we have :

ei+1 = ei +
rTi ri

rTi Ari
ri

= ei +
λ2∣∣ei∣∣22
λ2eTi Aei

⋅ (−λei)

= ei +
λ2∣∣ei∣∣22
λ2eTi ⋅ λei

⋅ (−λei)

= ei − ei = 0.

This means choosing αi = λ−1 will give the convergence immediately.
When ei has more than one eigenvector component, all the eigenvectors v1,⋯, vn

have a common eigenvalue λ, hence after n iterations :

ei+1 = ei +
∑nj=1 β2jλ2j
∑nj=1 β2jλ3j

⋅ (−Aei)

= ei +
λ2∑j=1 β2j
λ3∑j=1 β2j

⋅ (−λei)

= 0.

Therefore after at most n iterations, the algorithm will get to the minimizer point. ∎


