An Introduction Of Conjugate Gradient Method
Saiyue Lyu

Conjugate gradient method is an algorithm to solve the linear system equation Az = b for
a positive definite matrix A. This report summarizes the motivation, theoretical analysis,
detailed algorithm and the implementation of conjugate gradient method based on CO367
I took in Fall 2018 at UWaterloo.

1. Motivation

Definition 1.1. A symmetric matriz A € R™" is said to be positive definite if
hT Ah > 0,Vh e R"\{0}.

It is easy to see that a square real matrix A is positive definite if and only if its eigenvalues
are all positive.

For any positive definite matrix A € R™"™ and any vector b € R", we want to find the
solution x € R™ for the system of linear equation Az = b.

One of the methods to solve this system is to use Gauss-Jordan Elimination. When A
is invertible, the system has one unique solution x = A~'b and when A is not invertible,
the system has no solution or has a solution set. In both cases Gauss-Jordan Elimination
requires a complexity of @(n?) and the matrix multiplication A~!b has arithmetic complex-
ity of O(n?), so in total, solving this system requires a complexity of @(n?®). Unless this
matrix A is well-structured, this method will be computationally expensive. Due to this
difficulty, we want to transfer this question to a more solvable problem instead of solving
this linear system directly.

Note that if A is positive definite, then all of its eigenvalues are positive and 0 is not
an eigenvalue of A, this means the system Ax = 0 has no non-trivial solution, i.e. A is

invertible. So under the assumption that A is positive definite, we want to find the unique
solution of Az =b but not computing A~'b directly.

2. Optimization Conditions
Consider the optimization problem with the quadratic objective function
. I 7 T
min h(z) = 2% Az -b' z +c,
x

where A e R™"™ beR", ceR. I will show next that if A is positive definite, then solving
this optimization problem is equivalent to solving the system Ax = b.

First we introduce the basic definitions and results in optimization :

Definition 2.1. We say that x* is a local minimizer of f if



36 >0 such that f(x*) < f(x),Vz € Bs(z*).
We say that x* is a strict local minimizer of f if
38 >0 such that f(z*) < f(z),Va e (Bs(z*)\z*).
We say that x* is a global minimizer if
f(x*) < f(z),Vz e R".
We say that x* is a critical or stationary point if

Vf(x)=0.

Note that all local minimizers are critical points, but not all critical points are local
minimizers.

Theorem 2.1 (First Order Necessary Conditions For Optimality). Let f:R" - R
be C-smooth. If x* is a local minimizer, then vV f(x*) = 0.

Proof. Let Bs(x*) be such that f(x*) < f(x),Vx € Bs(z), i.e.

Vi, Ik <6, f(z" +k-e;) - f(z7) 20,
Haske) ) 5 o't s

which gives * N f(z*
g {wgomw.

Since f e C*, then limy_¢ w exists.

If both > 0, < 0 inequalities hold, then the equality holds, thus %(:ﬂ*) =0, Vi.
Therefore V f(z*) = 0. |

Theorem 2.2 (Second Order Necessary Conditions For Local Optimality). Let
f:R™ = R be C?-smooth. If x* is a local minimizer, then Vf(z*) = 0 and V2f(x*) is
positive semi-definite.

Proof. Let z e R™\{0}, we need to prove 2T V2 f(x*)z > 0.
Let Bs(x™) be such that f(z*) < f(x),Vx € Bs(z™).
Let y:=k- ” T with 0 < k < §, then we have :

f@+y) - f(@") 20

f@)+y v fa®) + 1yTVQf(JU*)y +¢(z) - f(2") 20 where hm (b(y)
2 =020 [yl

By 1st order condition, we have 47 vV f(z*) = 0, hence we have :

1 k2

S VI @)z o) 20

Take the limit when h — 0, by Talor’s theorem, we have :

o)
k_}g}gq&o k2 -

AV (2 )z+2||Z||2 ¢(k ) 2 0.

Therefore we have 27 V2 f(z*)z > 0. ]



Theorem 2.3 (Second Order Sufficient Conditions For Local Optimality). Let
i R" > Re C’Q(B(;(:U*)),:E* €eR,0>0. If Vf(x*) =0 and V2 f(x*) is positive definite, then
x* is a strict local minimizer.

Proof. By Talor’s 2nd order equation, Vy € Bs(x*), have :

f@*+y) = f@*) +y" v f(@*) + 3y" V2 f(2*)y + ¢(x) where limy_q,-0 % =0

Let 0 < A1 <--- <\, be the positive eigenvalues of V2f(z*).
By the definition of limit, have

. x A A
3> 00y B (e 10 < A o) < i

1yl

Note that,

yll?- M < y" V2 @)y < |[yl* - A

Also by assumption, V f(z*) =0, then we have :

£ +) = J) + 50" VA Yy + o)
> fa) + gl - IylP2E

o1
— )+ Il

> f(x*) for all y € B.(x*)\{0}.
Therefore z* is a strict local minimizer over B, (z*). ]

With above theorems, we obtain the following summary for optimality conditions :

= ¥ is a strict local minimizer

Vi(x*)=0
V2f(x*) positive definite
vf(x*)=0

= z” is a local minimizer = { § | . . o
Ve f(x*) positive semi — de finite

Lemma 2.4. The gradient of h(z) is Vh(z) = Az—b and the hessian of h(z) is V2h(z) = A.



Proof.
O yr o,
Tk
vb'z=b
o )
a—xkx Ax = 87 ;jAULL'ZQ?j
0
= 0—( Z Akja:kxj + Z Azkl‘ﬂkz + Akkxi)
Tk jzk izk
(as A is symmetric) = i(Z Apjxpa; + Z ApiTizy + Akkxi)
€T j*k ik
9 2
= 8—33]{(2 Z;qujl‘kxj + Akka:k)
j*
=2 Z Aijj + 2Akk:ck =2 ZAijj
Jk J
= kth row of 2Ax
vl Az = 24z

Similarly, we can get V2h(x) = V(Ax - b) = A.
Therefore Vh(x) = Az —b and V?h(z) = A. ]

Theorem 2.5. The quadratic function h(x) = %xTAa: —b"x + ¢ with positive definite A has
a unique global minimizer.

Proof. Since A is positive definite, then A~ exists. There is a unique critical point (i.e.
point where VA = 0) 2* = A™'b. Since V2h(2*) = A is positive definite, then z* is a local
minimizer. Note that for any y € R", have:

:C*TAy = (x*TAy)T =yt ATz = T Ax™, (1)
Hence have:

h(x* +y) = %(:p* + y)TA(x* +y) - bT(x* +y)+c

1 1 1 1
= —a Azt + —x*TAy + =yl Az* + ZyTAh - 2" = by +¢
2 2 2 2
1 *T * T _* 1 *T 1 T * 1 T T
=(§a: Azx" -b x +c)+(§a: Ay+§y Ax)+§y Ay-b'y

~ h(z*) + g Ax" + %yTAy 5Ty by (1)
= q(z") +y"T A(A7"b) + %yTAy -b"y
=q(z*) +y" b+ %yTAy -b"y

= q(z*) + %yTAy

>q(z”).

Therefore z* is a global minimizer of h(z). ]



Then using the summary for optimality conditions, we can derive the following theorem:

Theorem 2.6. The solution of the optimization problem is exactly the solution of Ax = b,
i.e. ¥ is the global minimizer of minh(x) if and only if x* is the solution of Ax =b.
x

Proof. x* is the solution of Az =b.
< Vh(z*)=0.
< r* is a local minimizer (since V2h(z) is positive definite).
< z* is the unique global minimizer (by theorem(2.5)). n

Therefore solving Az = b can be turned into solving the optimization problem min h(x),
x
which leads to the well-known Conjugate Gradient Method.

3. Direction and Step Size of Conjugate Gradient Method

To find a feasible direction p; and moves the iterate x; along the direction p; to make
the value of objective function to decrease, we have the following algorithm:

input : xg
for :=0,1,---, do
Choose direction p;;
Choose step size «; > 0;
Ti4l = T4 T O - Py
end
Algorithm 1: Algorithm for Feasible Direction

Direction p; determines the direction that the iterate x; should move along and step size
«; determines how far it moves away from the current z;, to select p;, we use the 1st order
Taylor expansion:

Tiv1) = h(m; — a;p;) = h(x;) — aup; Vh(x;) + ¢(ayp;) with lim =
=0 |laipil

What we want is h(zi41) < h(z;), i.e. ap! Vh(z;) < 0 and ¢(a;p;) is small enough,
hence this forces piTVh(a;i) < 0 and «; being small, to choose the direction p;, we use the
Steepest Descent Method, staring from z;, h(z) deceases fastest along the direction of
opposite of gradient of x;, i.e. let p; = =Vh(x;).

To determine the step size «;, we will use the method of Line Search:

Definition 3.1. The error e; = x; — x* is the vector showing how far the iterated solution
now from the solution.

Definition 3.2. The residual r; = b— Ax; is the vector showing how far the iterated b; now
from the value of b.

Note that r; = b— Ax; = —=Vh(x;) = p; = Ax* — Az; = — Ae;, which gives an idea that we
can think of residual as the direction of the steepest descent.



By Theorem 2.1, ; minimizes h(x;) when the directional derivative %h(wi) =0:

)"

0= ih(a:i +a;p;) = Vh(z; + aipi)” - pi
dOéi

= Vh(x; + aipi) ri = (b A(wi + @ipi))TTi
= (b - A(x; + am-))Tn =(b- A:ci)Tm - Oéi(ATz‘)T?”i

o (b—Axi)Tm ~ rlTn-
v (Ar))T'r; - rZTAri.

And to update r;;1 and p;;.1, we calculate :

Tivl = b- Al’i+1 =b- A(ﬂ?Z + Ozipi) =7;— OéiApi
Pi+1 = —Vh(xis).

Now we have the direction and step size with iterated relation:

pi = —Vh(.’l)z) =-Az; +b;=r1;

rhaTis
Di+1 =Tis1 + — 5 —Pi
roTg
(2
r;-fri
Q= T
ri Ar;

Tisl =T — Qi Ap;.

Therefore now we can get the algorithm for Conjugate Gradient Method.

4. Conjugate Gradient Method Algorithm

input : xg
output: z*

To =b;
Po =To;
for :=0,1,---, do
o
CoplApi?

Ti+l = Ti + O4P;;
i1 = Ti — 0 Aps;
7'311”41
Pi+1 =Tiv1 + = 7 —Pi
end
Algorithm 2: Algorithm for Conjugate Gradient Method

To implement this algorithm in python, first we need to generate an arbitrary symmetric
positive definite matrix, to do so, let T be any nonsingular matrix, then A =7 -T7 will be
positive definite if A is square. The Python code is below:



from scipy import random, linalg
import numpy as np
import matplotlib.pyplot as plt

matrixSize = 10

T = np.random.normal (size=[matrixSize,matrixSize])
A = np.dot(T,T.transpose())

b = np.ones(matrixSize)

x0=np.zeros (matrixSize)

if np.all(np.linalg.eigvals(A) > 0)

print (’the input matrix is positive definite\n’)
else :

print (’the input matrix is not positive definite\n’)

detA = np.linalg.det(A)
print (detA)

x = x0

epsilon=1e-10 # tolerence

r = b # residual

p =1 # direction

0old = np.dot(np.transpose(r), r)
iter = 0

error = np.zeros(matrixSize)

for i in range(len(b)):
Ap = np.dot(A,p)
alpha = o0ld / np.dot(np.transpose(p), Ap) # step size
X = X + alpha * p # update gradient descent
r = r - alpha * Ap # update residual incrementally
new = np.dot(np.transpose(r), r)
if np.sqrt(new) < epsilon:
break

p=r1 + (new / 0old) * p # determine new direction
old = new

error[i] = pow(np.linalg.norm(np.dot(A, x) - b),2)
iter = iter +1

sol=x
print("solution is found in %s iterations" % iter)

finalError = error[iter-1]
print(’final error is\n’, finalError)



plt.imshow(A)
plt.colorbar()
plt.show()
plt.plot(error , ’bo’)
plt.show()

Which gives the graphs of error when the matrix size is 10 by 10, 50 by 50 and 100 by
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Figure 1: Errors of Conjugate Gradient Method



5. Discussion of Implementation

Theoretically the algorithm will work for any symmetric positive definite matrix, how-
ever when the eigenvalues of matrix A is very close to zero but not equal to zero, the result
becomes very messy, the error will no longer behave a decreasing converging trend.

There are several other ways to generate ”good enough” positive semidefinite matrix,
here by ”good enough”, it means the eigenvalues of the matrix are very far from 0. The
first thought is to adjust T by letting Thew = a + b-T with a,b are large positive integers,
which will shifts the eigenvalues of A such that they are not close to 0. Another way is to
think about Spectral Decomposition of A, first generates series of strict positive number

that are not close to 0 to be the eigenvalues, then generate the corresponding orthogonal
AT+ A

matrix. Note, to make A symmetric, we can always do Apey = 5

After several testing, it is found that the program always stops within n iteration, this
leads to the discussion of convergence.

6. Convergence of Conjugate Gradient Method

Theorem 6.1. For any e;, it can be expressed as a linear combination of eigenvectors of

A.

Proof. Recall the fact that if A is symmetric, then the n eigenvectors of A are orthogonal,
say v1,---, Up. Since we can scale the eigenvectors arbitrarily, WLOG, we can assume ||vj||2 =
1,Vj. Hence have :

n
€; = Z ijj.
7=1

Hence we obtain the following equations :

r; = —Aei = - Z ﬁj)\j@j
=1

n

Irills = 3 B3 A
j=1

n
T 243
r; Ar; = Z‘iﬁj)\j
Jj=

n
leillz = 3 52
J=1

n

ef Aei = (3 Bv] )X BiAjvs) = . By
ps j=i

J=1



Hence we finally get :

10

Ti+l = T + Q- Pi
T
€41 =€ + AR
i+1 = €4 %
TATZ'
62)\2
=€ T
Z 2 62)\3
62)\2
=€; 62)\3 (—Aei).
J: 770

Theorem 6.2. Given any starting point, the conjugate gradient algorithm will achieve the

manimazer x* within n iterations.

Proof. When e; is one of the eigenvector of A with eigenvalue A, then r; = —Ae; = —)Xe; is

also an eigenvectors, we have :

€i+1

This means choosing a; =

:ei

-—e; + ——=—

TZ-TTZ'
r;prri
X2leills

)\2 TAei
NPleills
A2e T - \e;

Z-:o.

+ T

. (—)\ei)

7

-(=Aei)

7

A1 will give the convergence immediately.

When e; has more than one eigenvector component, all the eigenvectors vy, vy,
have a common eigenvalue A, hence after n iterations :
n 242
i+l _ jzlﬁj)‘j,(_A )
=e; 7 52)\3 €;
2 2
= e + ﬂ (-)e;)
- ™ (3
A3 Z] 1 /82
=0.
Therefore after at most n iterations, the algorithm will get to the minimizer point. m



