An Introduction Of Conjugate Gradient Method

Saiyue Lyu

Conjugate gradient method is an algorithm to solve the linear system equation $A x=b$ for a positive definite matrix A. This report summarizes the motivation, theoretical analysis, detailed algorithm and the implementation of conjugate gradient method based on CO367 I took in Fall 2018 at UWaterloo.

1. Motivation

Definition 1.1. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be positive definite if

$$
h^{T} A h>0, \forall h \in \mathbb{R}^{n} \backslash\{0\} .
$$

It is easy to see that a square real matrix A is positive definite if and only if its eigenvalues are all positive.

For any positive definite matrix $A \in \mathbb{R}^{n \times n}$ and any vector $b \in \mathbb{R}^{n}$, we want to find the solution $x \in \mathbb{R}^{n}$ for the system of linear equation $A x=b$.

One of the methods to solve this system is to use Gauss-Jordan Elimination. When A is invertible, the system has one unique solution $x=A^{-1} b$ and when A is not invertible, the system has no solution or has a solution set. In both cases Gauss-Jordan Elimination requires a complexity of $\mathcal{O}\left(n^{3}\right)$ and the matrix multiplication $A^{-1} b$ has arithmetic complexity of $\mathcal{O}\left(n^{2}\right)$, so in total, solving this system requires a complexity of $\mathcal{O}\left(n^{3}\right)$. Unless this matrix A is well-structured, this method will be computationally expensive. Due to this difficulty, we want to transfer this question to a more solvable problem instead of solving this linear system directly.

Note that if A is positive definite, then all of its eigenvalues are positive and 0 is not an eigenvalue of A, this means the system $A x=0$ has no non-trivial solution, i.e. A is invertible. So under the assumption that A is positive definite, we want to find the unique solution of $A x=b$ but not computing $A^{-1} b$ directly.

2. Optimization Conditions

Consider the optimization problem with the quadratic objective function

$$
\min _{x} h(x)=\frac{1}{2} x^{T} A x-b^{T} x+c,
$$

where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$. I will show next that if A is positive definite, then solving this optimization problem is equivalent to solving the system $A x=b$.

First we introduce the basic definitions and results in optimization :
Definition 2.1. We say that x^{*} is a local minimizer of f if

$$
\exists \delta>0 \text { such that } f\left(x^{*}\right) \leq f(x), \forall x \in B_{\delta}\left(x^{*}\right) .
$$

We say that x^{*} is a strict local minimizer of f if

$$
\exists \delta>0 \text { such that } f\left(x^{*}\right)<f(x), \forall x \in\left(B_{\delta}\left(x^{*}\right) \backslash x^{*}\right) .
$$

We say that x^{*} is a global minimizer if

$$
f\left(x^{*}\right) \leq f(x), \forall x \in \mathbb{R}^{n} .
$$

We say that x^{*} is a critical or stationary point if

$$
\nabla f(x)=0 .
$$

Note that all local minimizers are critical points, but not all critical points are local minimizers.

Theorem 2.1 (First Order Necessary Conditions For Optimality). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1}-smooth. If x^{*} is a local minimizer, then $\nabla f\left(x^{*}\right)=0$.
Proof. Let $B_{\delta}\left(x^{*}\right)$ be such that $f\left(x^{*}\right) \leq f(x), \forall x \in B_{\delta}\left(x^{*}\right)$, i.e.

$$
\begin{gathered}
\forall i, \forall|k|<\delta, f\left(x^{*}+k \cdot e_{i}\right)-f\left(x^{*}\right) \geq 0, \\
\text { which gives }\left\{\begin{array}{l}
\frac{f\left(x^{*}+k \cdot e_{i}\right)-f\left(x^{*}\right)}{k} \geq 0 \text { if } k>0 \\
\frac{f\left(x^{*}+k \cdot i_{i}\right)-f\left(x^{*}\right)}{k} \leq 0 \text { if } k<0 .
\end{array}\right.
\end{gathered}
$$

Since $f \in C^{1}$, then $\lim _{k \rightarrow 0} \frac{f\left(x^{*}+k \cdot e_{i}\right)}{k}$ exists.
If both $\geq 0, \leq 0$ inequalities hold, then the equality holds, thus $\frac{\partial f}{\partial x_{i}}\left(x^{*}\right)=0, \forall i$.
Therefore $\nabla f\left(x^{*}\right)=0$.
Theorem 2.2 (Second Order Necessary Conditions For Local Optimality). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{2}-smooth. If x^{*} is a local minimizer, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semi-definite.
Proof. Let $z \in \mathbb{R}^{n} \backslash\{0\}$, we need to prove $z^{T} \nabla^{2} f\left(x^{*}\right) z \geq 0$.
Let $B_{\delta}\left(x^{*}\right)$ be such that $f\left(x^{*}\right) \leq f(x), \forall x \in B_{\delta}\left(x^{*}\right)$.
Let $y:=k \cdot \frac{z}{\|z\|}$ with $0<k<\delta$, then we have :

$$
\begin{aligned}
f\left(x^{*}+y\right)-f\left(x^{*}\right) & \geq 0 \\
f\left(x^{*}\right)+y^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} y^{T} \nabla^{2} f\left(x^{*}\right) y+\phi(x)-f\left(x^{*}\right) & \geq 0 \text { where } \lim _{y \rightarrow 0, y \neq 0} \frac{\phi(y)}{\|y\|}=0 .
\end{aligned}
$$

By 1st order condition, we have $y^{T} \nabla f\left(x^{*}\right)=0$, hence we have :

$$
\begin{gathered}
\frac{1}{2} \frac{k^{2}}{\|z\|^{2}} z^{T} \nabla^{2} f\left(x^{*}\right) z+\phi\left(h \frac{z}{\|z\|}\right) \geq 0 \\
z^{T} \nabla^{2} f\left(x^{*}\right) z+2\|z\|^{2} \frac{1}{k^{2}} \phi\left(k \frac{z}{\|z\|}\right) \geq 0 .
\end{gathered}
$$

Take the limit when $h \rightarrow 0$, by Talor's theorem, we have:

$$
\lim _{k \rightarrow 0, k \neq 0} \frac{\phi\left(k \cdot \frac{z}{\|z\|}\right)}{k^{2}}=0 .
$$

Therefore we have $z^{T} \nabla^{2} f\left(x^{*}\right) z \geq 0$.

Theorem 2.3 (Second Order Sufficient Conditions For Local Optimality). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \in C^{2}\left(B_{\delta}\left(x^{*}\right)\right), x^{*} \in \mathbb{R}, \delta>0$. If $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite, then x^{*} is a strict local minimizer.

Proof. By Talor's 2nd order equation, $\forall y \in B_{\delta}\left(x^{*}\right)$, have :
$f\left(x^{*}+y\right)=f\left(x^{*}\right)+y^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} y^{T} \nabla^{2} f\left(x^{*}\right) y+\phi(x)$ where $\lim _{y \rightarrow 0, y \neq 0} \frac{\phi(y)}{\|y\|}=0$.
Let $0<\lambda_{1}<\cdots<\lambda_{n}$ be the positive eigenvalues of $\nabla^{2} f\left(x^{*}\right)$.
By the definition of limit, have

$$
\exists r>0: \forall y \in B_{r}\left(x^{*}\right),\left|\frac{\phi(x)}{\|y\|^{2}}\right| \leq \frac{\lambda_{1}}{4} \Longleftrightarrow|\phi(x)| \leq\|y\|^{2} \frac{\lambda_{1}}{4} .
$$

Note that,

$$
\|y\|^{2} \cdot \lambda_{1} \leq y^{T} \nabla^{2} f\left(x^{*}\right) y \leq\|y\|^{2} \cdot \lambda_{n} .
$$

Also by assumption, $\nabla f\left(x^{*}\right)=0$, then we have :

$$
\begin{aligned}
f\left(x^{*}+y\right) & =f\left(x^{*}\right)+\frac{1}{2} y^{T} \nabla^{2} f\left(x^{*}\right) y+\phi(y) \\
& \geq f\left(x^{*}\right)+\frac{1}{2}\|y\|^{2} \lambda_{1}-\|y\|^{2} \frac{\lambda_{1}}{4} \\
& =f\left(x^{*}\right)+\frac{1}{4}\|y\|^{2} \cdot \lambda_{1} \\
& >f\left(x^{*}\right) \text { for all } y \in B_{r}\left(x^{*}\right) \backslash\{0\} .
\end{aligned}
$$

Therefore x^{*} is a strict local minimizer over $B_{r}\left(x^{*}\right)$.
With above theorems, we obtain the following summary for optimality conditions :

$$
\begin{aligned}
& \left\{\begin{array}{l}
\nabla f\left(x^{*}\right)=0 \\
\nabla^{2} f\left(x^{*}\right) \text { positive definite }
\end{array} \Rightarrow x^{*}\right. \text { is a strict local minimizer } \\
\Rightarrow & x^{*} \text { is a local minimizer } \Rightarrow\left\{\begin{array}{l}
\nabla f\left(x^{*}\right)=0 \\
\nabla^{2} f\left(x^{*}\right) \text { positive semi - definite }
\end{array}\right.
\end{aligned} .
$$

Lemma 2.4. The gradient of $h(x)$ is $\nabla h(x)=A x-b$ and the hessian of $h(x)$ is $\nabla^{2} h(x)=A$.

Proof.

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}} b^{T} x & =b_{k} \\
\nabla b^{T} x & =b \\
\frac{\partial}{\partial x_{k}} x^{T} A x & =\frac{\partial}{\partial x_{k}} \sum_{i, j} A_{i j} x_{i} x_{j} \\
& =\frac{\partial}{\partial x_{k}}\left(\sum_{j \neq k} A_{k j} x_{k} x_{j}+\sum_{i \neq k} A_{i k} x_{i} x_{k}+A_{k k} x_{k}^{2}\right) \\
\text { (as } A \text { is symmetric) } & =\frac{\partial}{\partial x_{k}}\left(\sum_{j \neq k} A_{k j} x_{k} x_{j}+\sum_{i \neq k} A_{k i} x_{i} x_{k}+A_{k k} x_{k}^{2}\right) \\
& =\frac{\partial}{\partial x_{k}}\left(2 \sum_{j \neq k} A_{k j} x_{k} x_{j}+A_{k k} x_{k}^{2}\right) \\
& =2 \sum_{j \neq k} A_{k j} x_{j}+2 A_{k k} x_{k}=2 \sum_{j} A_{k j} x_{j} \\
& =k \text { th row of } 2 A x \\
\nabla x^{T} A x & =2 A x
\end{aligned}
$$

Similarly, we can get $\nabla^{2} h(x)=\nabla(A x-b)=A$.
Therefore $\nabla h(x)=A x-b$ and $\nabla^{2} h(x)=A$.
Theorem 2.5. The quadratic function $h(x)=\frac{1}{2} x^{T} A x-b^{T} x+c$ with positive definite A has a unique global minimizer.
Proof. Since A is positive definite, then A^{-1} exists. There is a unique critical point (i.e. point where $\nabla h=0) x^{*}=A^{-1} b$. Since $\nabla^{2} h\left(x^{*}\right)=A$ is positive definite, then x^{*} is a local minimizer. Note that for any $y \in \mathbb{R}^{n}$, have:

$$
\begin{equation*}
x^{*^{T}} A y=\left(x^{*^{T}} A y\right)^{T}=y^{T} A^{T} x^{*}=y^{T} A x^{*} . \tag{1}
\end{equation*}
$$

Hence have:

$$
\begin{aligned}
h\left(x^{*}+y\right) & =\frac{1}{2}\left(x^{*}+y\right)^{T} A\left(x^{*}+y\right)-b^{T}\left(x^{*}+y\right)+c \\
& =\frac{1}{2} x^{*^{T}} A x^{*}+\frac{1}{2} x^{*^{T}} A y+\frac{1}{2} y^{T} A x^{*}+\frac{1}{2} y^{T} A h-b^{T} x^{*}-b^{T} y+c \\
& =\left(\frac{1}{2} x^{x^{T}} A x^{*}-b^{T} x^{*}+c\right)+\left(\frac{1}{2} x^{*^{T}} A y+\frac{1}{2} y^{T} A x^{*}\right)+\frac{1}{2} y^{T} A y-b^{T} y \\
& =h\left(x^{*}\right)+y^{T} A x^{*}+\frac{1}{2} y^{T} A y-b^{T} y \text { by }(1) \\
& =q\left(x^{*}\right)+y^{T} A\left(A^{-1} b\right)+\frac{1}{2} y^{T} A y-b^{T} y \\
& =q\left(x^{*}\right)+y^{T} b+\frac{1}{2} y^{T} A y-b^{T} y \\
& =q\left(x^{*}\right)+\frac{1}{2} y^{T} A y \\
& \geq q\left(x^{*}\right) .
\end{aligned}
$$

Therefore x^{*} is a global minimizer of $h(x)$.

Then using the summary for optimality conditions, we can derive the following theorem:
Theorem 2.6. The solution of the optimization problem is exactly the solution of $A x=b$, i.e. x^{*} is the global minimizer of $\min _{x} h(x)$ if and only if x^{*} is the solution of $A x=b$.

Proof. x^{*} is the solution of $A x=b$.
$\Leftrightarrow \nabla h\left(x^{*}\right)=0$.
$\Leftrightarrow x^{*}$ is a local minimizer (since $\nabla^{2} h(x)$ is positive definite).
$\Leftrightarrow x^{*}$ is the unique global minimizer (by theorem(2.5)).
Therefore solving $A x=b$ can be turned into solving the optimization problem $\min _{x} h(x)$, which leads to the well-known Conjugate Gradient Method.

3. Direction and Step Size of Conjugate Gradient Method

To find a feasible direction p_{i} and moves the iterate x_{i} along the direction p_{i} to make the value of objective function to decrease, we have the following algorithm:

```
input : }\mp@subsup{x}{0}{
for }i=0,1,\cdots,\mathrm{ do
    Choose direction p
    Choose step size 就>0;
    xi+1}=\mp@subsup{x}{i}{}+\mp@subsup{\alpha}{i}{}\cdot\mp@subsup{p}{i}{
end
```

Algorithm 1: Algorithm for Feasible Direction
Direction p_{i} determines the direction that the iterate x_{i} should move along and step size α_{i} determines how far it moves away from the current x_{i}, to select p_{i}, we use the 1 st order Taylor expansion:

$$
h\left(x_{i+1}\right)=h\left(x_{i}-\alpha_{i} p_{i}\right)=h\left(x_{i}\right)-\alpha_{i} p_{i}^{T} \nabla h\left(x_{i}\right)+\phi\left(\alpha_{i} p_{i}\right) \text { with } \lim _{\alpha_{i} \rightarrow 0} \frac{\phi\left(\alpha_{i} p_{i}\right)}{\left\|\alpha_{i} p_{i}\right\|}=0 .
$$

What we want is $h\left(x_{i+1}\right)<h\left(x_{i}\right)$, i.e. $\alpha_{i} p_{i}^{T} \nabla h\left(x_{i}\right)<0$ and $\phi\left(\alpha_{i} p_{i}\right)$ is small enough, hence this forces $p_{i}^{T} \nabla h\left(x_{i}\right)<0$ and α_{i} being small, to choose the direction p_{i}, we use the Steepest Descent Method, staring from $x_{i}, h(x)$ deceases fastest along the direction of opposite of gradient of x_{i}, i.e. let $p_{i}=-\nabla h\left(x_{i}\right)$.

To determine the step size α_{i}, we will use the method of Line Search:

Definition 3.1. The error $e_{i}=x_{i}-x^{*}$ is the vector showing how far the iterated solution now from the solution.

Definition 3.2. The residual $r_{i}=b-A x_{i}$ is the vector showing how far the iterated b_{i} now from the value of b.

Note that $r_{i}=b-A x_{i}=-\nabla h\left(x_{i}\right)=p_{i}=A x^{*}-A x_{i}=-A e_{i}$, which gives an idea that we can think of residual as the direction of the steepest descent.

By Theorem 2.1, α_{i} minimizes $h\left(x_{i}\right)$ when the directional derivative $\frac{d}{d \alpha_{i}} h\left(x_{i}\right)=0$:

$$
\begin{aligned}
0 & =\frac{d}{d \alpha_{i}} h\left(x_{i}+\alpha_{i} p_{i}\right)=\nabla h\left(x_{i}+\alpha_{i} p_{i}\right)^{T} \cdot p_{i} \\
& =\nabla h\left(x_{i}+\alpha_{i} p_{i}\right)^{T} r_{i}=\left(b-A\left(x_{i}+\alpha_{i} p_{i}\right)\right)^{T} r_{i} \\
& =\left(b-A\left(x_{i}+\alpha_{i} r_{i}\right)\right)^{T} r_{i}=\left(b-A x_{i}\right)^{T} r_{i}-\alpha_{i}\left(A r_{i}\right)^{T} r_{i} \\
\alpha_{i} & =\frac{\left(b-A x_{i}\right)^{T} r_{i}}{\left(A r_{i}\right)^{T} r_{i}}=\frac{r_{i}^{T} r_{i}}{r_{i}^{T} A r_{i}} .
\end{aligned}
$$

And to update r_{i+1} and p_{i+1}, we calculate :

$$
\begin{aligned}
r_{i+1}=b-A x_{i+1}=b-A\left(x_{i}+\alpha_{i} p_{i}\right) & =r_{i}-\alpha_{i} A p_{i} \\
p_{i+1} & =-\nabla h\left(x_{i+1}\right) .
\end{aligned}
$$

Now we have the direction and step size with iterated relation:

$$
\begin{aligned}
p_{i} & =-\nabla h\left(x_{i}\right)=-A x_{i}+b_{i}=r_{i} \\
p_{i+1} & =r_{i+1}+\frac{r_{i+1}^{T} r_{i+1}}{r_{i}^{T} r_{i}} p_{i} \\
\alpha_{i} & =\frac{r_{i}^{T} r_{i}}{r_{i}^{T} A r_{i}} \\
r_{i+1} & =r_{i}-\alpha_{i} A p_{i} .
\end{aligned}
$$

Therefore now we can get the algorithm for Conjugate Gradient Method.

4. Conjugate Gradient Method Algorithm

```
input : \(x_{0}\)
output: \(x^{*}\)
\(r_{0}=b\);
\(p_{0}=r_{0}\);
for \(i=0,1, \cdots\), do
    \(\alpha_{i}=\frac{r_{i}^{T} r_{i}}{p_{i}^{T} A p_{i}} ;\)
    \(x_{i+1}=x_{i}+\alpha_{i} p_{i} ;\)
    \(r_{i+1}=r_{i}-\alpha_{i} A p_{i} ;\)
    \(p_{i+1}=r_{i+1}+\frac{r_{i+1}^{T} r_{i+1}}{r_{i}^{T} r_{i}} p_{i}\)
end
```

Algorithm 2: Algorithm for Conjugate Gradient Method
To implement this algorithm in python, first we need to generate an arbitrary symmetric positive definite matrix, to do so, let T be any nonsingular matrix, then $A=T \cdot T^{T}$ will be positive definite if A is square. The Python code is below:

```
from scipy import random, linalg
import numpy as np
import matplotlib.pyplot as plt
matrixSize = 10
T = np.random.normal(size=[matrixSize,matrixSize])
A = np.dot(T,T.transpose())
b = np.ones(matrixSize)
x0=np.zeros(matrixSize)
if np.all(np.linalg.eigvals(A) > 0) :
    print ('the input matrix is positive definite\n')
else :
    print ('the input matrix is not positive definite\n')
detA = np.linalg.det(A)
print(detA)
x = x0
epsilon=1e-10 # tolerence
r = b # residual
p = r # direction
old = np.dot(np.transpose(r), r)
iter = 0
error = np.zeros(matrixSize)
for i in range(len(b)):
        Ap = np.dot(A,p)
        alpha = old / np.dot(np.transpose(p), Ap) # step size
        x = x + alpha * p # update gradient descent
        r = r - alpha * Ap # update residual incrementally
        new = np.dot(np.transpose(r), r)
        if np.sqrt(new) < epsilon:
            break
        p = r + (new / old) * p # determine new direction
        old = new
        error[i] = pow(np.linalg.norm(np.dot(A, x) - b),2)
        iter = iter +1
sol=x
print("solution is found in %s iterations" % iter)
finalError = error[iter-1]
print('final error is\n', finalError)
```

```
plt.imshow(A)
plt.colorbar()
plt.show()
plt.plot(error , 'bo')
plt.show()
```

Which gives the graphs of error when the matrix size is 10 by 10,50 by 50 and 100 by 100 :

Figure 1: Errors of Conjugate Gradient Method

5. Discussion of Implementation

Theoretically the algorithm will work for any symmetric positive definite matrix, however when the eigenvalues of matrix A is very close to zero but not equal to zero, the result becomes very messy, the error will no longer behave a decreasing converging trend.

There are several other ways to generate "good enough" positive semidefinite matrix, here by "good enough", it means the eigenvalues of the matrix are very far from 0 . The first thought is to adjust T by letting $T_{\text {new }}=a+b \cdot T$ with a, b are large positive integers, which will shifts the eigenvalues of A such that they are not close to 0 . Another way is to think about Spectral Decomposition of A, first generates series of strict positive number that are not close to 0 to be the eigenvalues, then generate the corresponding orthogonal matrix. Note, to make A symmetric, we can always do $A_{\text {new }}=\frac{A^{T}+A}{2}$.

After several testing, it is found that the program always stops within n iteration, this leads to the discussion of convergence.

6. Convergence of Conjugate Gradient Method

Theorem 6.1. For any e_{i}, it can be expressed as a linear combination of eigenvectors of A.

Proof. Recall the fact that if A is symmetric, then the n eigenvectors of A are orthogonal, say v_{1}, \cdots, v_{n}. Since we can scale the eigenvectors arbitrarily, WLOG, we can assume $\left\|v_{j}\right\|_{2}=$ $1, \forall j$. Hence have :

$$
e_{i}=\sum_{j=1}^{n} \beta_{j} v_{j} .
$$

Hence we obtain the following equations :

$$
\begin{aligned}
r_{i} & =-A e_{i}=-\sum_{j=1}^{n} \beta_{j} \lambda_{j} v_{j} \\
\left\|r_{i}\right\|_{2}^{2} & =\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{2} \\
r_{i}^{T} A r_{i} & =\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{3} \\
\left\|e_{i}\right\|_{2}^{2} & =\sum_{j=1}^{n} \beta^{2} \\
e_{i}^{T} A e_{i} & =\left(\sum_{j=1}^{n} \beta_{j} v_{j}^{T}\right)\left(\sum_{j=1}^{n} \beta_{j} \lambda_{j} v_{j}\right)=\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j} .
\end{aligned}
$$

Hence we finally get :

$$
\begin{aligned}
x_{i+1} & =x_{i}+\alpha_{i} \cdot p_{i} \\
e_{i+1} & =e_{i}+\frac{r_{i}^{T} r_{i}}{r_{i}^{T} A r_{i}} \cdot r_{i} \\
& =e_{i}+\frac{\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{2}}{\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{3}} \cdot r_{i} \\
& =e_{i}+\frac{\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{2}}{\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{3}} \cdot\left(-A e_{i}\right) .
\end{aligned}
$$

Theorem 6.2. Given any starting point, the conjugate gradient algorithm will achieve the minimizer x^{*} within n iterations.

Proof. When e_{i} is one of the eigenvector of A with eigenvalue λ, then $r_{i}=-A e_{i}=-\lambda e_{i}$ is also an eigenvectors, we have :

$$
\begin{aligned}
e_{i+1} & =e_{i}+\frac{r_{i}^{T} r_{i}}{r_{i}^{T} A r_{i}} r_{i} \\
& =e_{i}+\frac{\lambda^{2}\left\|e_{i}\right\|_{2}^{2}}{\lambda^{2} e_{i}^{T} A e_{i}} \cdot\left(-\lambda e_{i}\right) \\
& =e_{i}+\frac{\lambda^{2}\left\|e_{i}\right\|_{2}^{2}}{\lambda^{2} e_{i}^{T} \cdot \lambda e_{i}} \cdot\left(-\lambda e_{i}\right) \\
& =e_{i}-e_{i}=0 .
\end{aligned}
$$

This means choosing $\alpha_{i}=\lambda^{-1}$ will give the convergence immediately.
When e_{i} has more than one eigenvector component, all the eigenvectors v_{1}, \cdots, v_{n} have a common eigenvalue λ, hence after n iterations:

$$
\begin{aligned}
e^{i+1} & =e_{i}+\frac{\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{2}}{\sum_{j=1}^{n} \beta_{j}^{2} \lambda_{j}^{3}} \cdot\left(-A e_{i}\right) \\
& =e_{i}+\frac{\lambda^{2} \sum_{j=1} \beta_{j}^{2}}{\lambda^{3} \sum_{j=1} \beta_{j}^{2}} \cdot\left(-\lambda e_{i}\right) \\
& =0 .
\end{aligned}
$$

Therefore after at most n iterations, the algorithm will get to the minimizer point.

