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Chapter 1

Introduction

Mathematical Optimization (formally math programming)

Find a best soln to the model of a problem

Application :

• Operation Research

1) Scheduling and Planning

2) Supply Chain Management

3) Vehicle Routing

4) Power Grid Optimization

• Statistics and Machine Learning

1) Curve Fitting

2) Classification, Clustering, SVM ...

3) Deep Learning

• Finance

• Optimal Control

• Biology – Protein Folding
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1.3 Classification of Problems – Types of functions involved Scribe : Saiyue Lyu

Optimization

(OPT )minimize
X

f(x) objective function

subject to gi(x) ≤ 0, ∀i = 1, · · · ,m constraints

x ∈ Rn.

Remark
1) max f(x) = −min−f(x)

2) {x ∈ Rn, g(x) ≥ 0} = {x ∈ Rn,−g(x) ≤ 0}

3) {x ∈ Rn, g(x) ≤ b} = {x ∈ Rn, g(x)− b ≤ 0}

1.1 Classification of Solns

Definition 1.1.1 (Open ball & Closure)
The open ball of radius δ around x̄ is Bδ(x̄) = {x ∈ Rn, ||x− x̄|| < δ}

The closure of Bδ(x̄) is Bδ(x̄) = {x ∈ Rn, ||x− x̄|| ≤ δ}

Definition 1.1.2 (Global & Local Minimizer)
Consider f : D → R. the point x∗ ∈ D is

• a global minimizer for f on D if f(x∗) ≤ f(x), ∀x ∈ D

• a strict global minimizer for f on D if f(x∗) < f(x),∀x ∈ D,x ̸= x∗

• a local minimizer for f on D if ∃δ > 0, f(x∗) ≤ f(x),∀x ∈ Bδ(x
∗) ∩D

• a strict local minimizer for f on D if ∃δ > 0, f(x∗) < f(x),∀x ∈ Bδ(x
∗) ∩D,x ̸= x∗

1.2 Classification of Problems

1. If f(x) = 0, ∀x ∈ Rn, then (OPT) is a feasible problem

2. If we have m = 0 constraints, then (OPT) is an unconstrained optimization problem.

1.3 Classification of Problems – Types of functions involved

Why do we care?

In the absence of hypothesis on f and g, (OPT) is unsovlable.

Remark
”Black box” optimization framework.

All we have is an ”oracle” that can compute values of f(x) for any x (and possibly some deriva-
tives)

6



1.3 Classification of Problems – Types of functions involved Scribe : Saiyue Lyu

Example 1.3.1
Consider h(x) =

{
0, if x ∈ Zn

1, otherwise

minimize
X

f(x)

subject to gi(x) ≤ 0, ∀i = 1, · · · ,m
h(x) ≤ 0,

x ∈ Rn.

In other word, we want x ∈ Zn, where Zn is a lattice

Definition 1.3.1 (discrete optimization problem)
When the constraints of (OPT) restrict solns to a lattice, then (OPT) is called a discrete optimiza-
tion problem

Definition 1.3.2 (Continuous Function)
A function f : D → R is continuous over D if ∀ϵ > 0, ∃δ > 0 such that |x−y| < δ ⇐ |f(x)−f(y)| <
ϵ,∀x, y ∈ D

Definition 1.3.3 (Ck-smooth)
A function f : D → R, D ⊂ Rn is open, then f is Ck-smooth over D

(
i.e. f ∈ Ck(D)

)
if all its

≤ k-th derivatives are continuous over D

Example 1.3.2
h(x) =

{
1, if x ≥ 2

−1, if x < 2
is discontinuous

g(x) = |x− 2| is continuous and C0 smooth

f(x) =

{
1
2(x− 2)2, if x ≥ 2
1
2(2− x)2, if x < 2

is continuous and C1 smooth

Definition 1.3.4 (Gradient)
Let f ∈ C1(D) for some D ⊂ Rn. Its Gradient ∇f ∈ C0(D) : D → Rn is given by

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)


Definition 1.3.5 (Hessian)
Let f ∈ C2(D) for some D ⊂ Rn. Its Hessian ∇2f ∈ C1(D) : D → Rn×n is given by

∇2f(x) =


∂f

∂x1∂x1
(x) . . . ∂f

∂x1∂xn
(x)

...
. . .

...
∂f

∂xn∂x1
(x) . . . ∂f

∂xn∂xn
(x)


Remark
If f and g are linear functions, then (OPT) is a linear programming problem.
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Chapter 2

Linear Algebra

2.1 Vector and Matrix Norm

Definition 2.1.1 (Norm)
A norm || · || on Rn assigns a scalar ||x|| to every x ∈ Rn such that

1) ||x|| ≥ 0, ∀x ∈ Rn

2) ||c · x|| = |c| · ||x|| ∀c ∈ R, x ∈ Rn

3) ||x|| = 0 ⇐⇒ x = 0

4) ||x+ y|| ≤ ||x||+ ||y||

Remark

LkNorm ||x||k = (

n∑
i=1

|xi|k)1/k

ManhattanNorm ||x||1 =
∑

|xi|

EuclideanNorm ||x||2 =
√∑

x2i

InfiniteNorm ||x||∞ = max |xi|

Theorem 2.1.1 (Schwartz Inequality)
∀x, y ∈ Rn, |xT y| ≤ ||x||2 · ||y||2, the equality holds when x = λy for some λ ∈ R

Theorem 2.1.2 (Pythagorean Thm)
If x, y ∈ Rn are orthogonal, then ||x+ y||22 = ||x||22 + ||y||22

Definition 2.1.2 (Induced Norm)
Given a vector norm || · ||, the induced matrix norm associates a scalar ||A|| to all A ∈ Rn×n with
||A|| = max

||x||=1
||Ax||

8



2.2 Eigenvalues Scribe : Saiyue Lyu

Proposition 2.1.1
||A||2 = max

||x||2=1
||Ax||2 = max

||x||2=||y||2=1
|yTAx|

Proof
Apply Schwartz Inequality to |yTAx|

Proposition 2.1.2
||A||2 = ||AT ||2

Proof
Swap x and y in the above Proposition 2.1.1

Proposition 2.1.3
Let A ∈ Rn×n, TFAE:

1) A is nonsingular

2) AT is nonsingular

3) ∀x ∈ Rn \ {0}, Ax ̸= 0

4) ∀b ∈ Rn, ∃x ∈ Rn unique such that Ax = b

5) Columns of A are linear independent

6) Rows of A are linearly independent

7) ∃B ∈ Rn×n unique such that AB = I = BA, where B is the inverse of A

8) ∀A,B ∈ Rn×n, (AB)−1 = B−1A−1 if B−1 exists

2.2 Eigenvalues

Definition 2.2.1 (Eigenvalue & Eigenvector)
The characteristic polynomial ϕ : R → R of A ∈ Rn×n is ϕ(λ) = det(A − λI). It has n (possibly
complex or repeated) roots, which are the eigenvalues of A. Given an eigenvalue λ of A, x ∈ Rn is
the corresponding eigenvector of A if Ax = λx

Proposition 2.2.1
Given A ∈ Rn×n

1) λ is an eigenvalue ⇐⇒ ∃ a corresponding eigenvector

2) A is singular ⇐⇒ it has a zero eigenvalue

3) If A is triangular, then its eigenvector are its diagonal entries

4) If S ∈ Rn×n is nonsingular and B = SAS−1, then A,B have the same eigenvalues

5) If the eigenvalues of A are λ1, · · · , λn, then

• the eigenvalues of A+ cI are λ1 + c, · · · , λn + c

• the eigenvalues of Ak are λk1, · · · , λkn, k ∈ R

• the eigenvalues of A−1 are 1
λ1
, · · · , 1

λn

9



2.3 Symmetric Matrices Scribe : Saiyue Lyu

• the eigenvalues of AT are λ1, · · · , λn

Definition 2.2.2 (Spectral Radius)
The spectral radius of ρ(A) of A ∈ Rn×n is max

λ is eigenvalue
|λ|

Proposition 2.2.2
For any induced norm || · ||, ρ(A) ≤ ||Ak||1/k for k = 1, 2, · · ·

Proof
Trick : ||Ak|| = max

||y||=1
||Aky|| = max

y ̸=0

1

||y||
||Aky||

In particular, let λ be any eigenvalue of A, x be the corresponding eigenvector

||Ak|| ≥ 1

||x||
||Ak · x|| = 1

||x||
||A · · ·A · x||

=
1

||x||
||λk · x||

= |λk|

So for any eigenvalue λ, ||Ak|| ≥ |λ|k

Therefore ||Ak||1/k ≥ |λ|, ∀λ, thus ||Ak||1/k ≥ ρ(A)

Proposition 2.2.3
For any induced norm || · ||, lim

k→∞
||Ak||1/k = ρ(A)

Proof
Too long, omitted

2.3 Symmetric Matrices

Proposition 2.3.1
Let A ∈ Rn×n be symmetric, then

1) Its eigenvalues are all Real

2) Its eigenvetors are n mutually orthogonal Real nonzero vectors

3) If the n eigenvectors x1, · · · , xn ∈ Rn are normalized such that ||x||2 = 1 with corresponding
eigenvalues λ1, · · · , λn, then A =

∑n
i=1 λixix

T
i

Proof
Easy

Proposition 2.3.2
Let A ∈ Rn×n be symmetric, then ||A||2 = ρ(A)

Proof
We already know ρ(A) ≤ ||Ak||1/k, in particular, ρ(A) ≤ ||A||2

It remains to show that ρ(A) ≥ ||A||2
10



2.3 Symmetric Matrices Scribe : Saiyue Lyu

Because the eigenvectors xi, i = 1, · · · , n of A can be assumed ,utually orthogonal

Then we can write any y ∈ Rn as y =
∑n

i=1 βixi for some βi ∈ R

By Pythagorean Thm, ||y||22 =
∑
β2i ||xi||22

Now Ay = A
∑
βixi =

∑
βiAxi =

∑
βiλixi

Since all xi are mutually orthogonal, by Pthahorean Thm again, have

||Ay||22 =
∑

β2i λ
2
i ||xi||22

≤
∑

β2i ρ(A)
2||xi||22

= ρ(A)2||y||22

By which we get, ||Ay||2 ≤ ρ(A)||y||2

Also by the definition, we have

||A||2 = max
y ̸=0

1

||y||2
||Ay||2

≤ max
y ̸=0

1

||y||2
· ρ(A)||y||2

= ρ(A)

Proposition 2.3.3
Let A ∈ Rn×n be symmetric with eigenvalues λ1, · · · , λn ∈ R

Then ∀y ∈ Rn, λ1||y||22 ≤ yTAy ≤ λn||y||22
Proof
Again, write y =

∑
βixi for some βi ∈ R with xi are the orthogonal eigenvectors

On the one hand,

yTAy = (
∑

βixi)
T (
∑

βiλixi)

=
∑

β2i λix
T
i xi as xixj = 0 if i ̸= j

=
∑

β2i λi||xi||22

WLOG, we can assume ||xi||2 = 1, then we have

yTAy =
∑

β2i λi

On the other hand,

||y||22 =
∑

β2i ||xi||22 =
∑

β2i

Clearly, we have

λ1
∑

βi ≤
∑

β2i λi ≤ λn
∑

β2i

λ1||y||22 ≤ yTAy ≤ λn||y||22
11



2.3 Symmetric Matrices Scribe : Saiyue Lyu

Remark
Why can we assume ||xi||1 = 1?

As xi being the eigenvectors of A are defined up to scalar Ax = λx, we have

A( 1
||x||x) = λ( 1

||x||x)

Proposition 2.3.4
Let A ∈ Rn×n be symmetric, then ||Ak||2 = ||A||k2,∀k = 1, 2, · · ·

Proof
Since AT = A, then (Ak)T = (A · · ·A)T = AT · · ·AT = A · · ·A = Ak

Since Ak is symmetric, then ||Ak||2 = ρ(Ak)

We know that the eigenvalues of Ak are λk1, · · · , λkn

Thus ρ(Ak) =
(
ρ(A)

)k
We know ρ(A) = ||A||2, therefore ||A||k2 = ||Ak||2

Proposition 2.3.5
Let A ∈ Rn×n (not necessary symmetric), then ||A||22 = ||ATA||2 = ||AAT ||2

Proof
On the one hand,

||Ax||22 = (Ax)T (Ax) = xT (ATAx) ≤ ||x||2 · ||ATAx||2 ≤ ||x||2 · ||AAT ||2 · ||x||2

||A||22 = max
x∈Rn

1

||x||22
· ||Ax||22 ≤ ||ATA||2

On the other hand,

||ATA|| = max
||x||=||y||=1

|yTATAx|

≤ max
||y||=1,||x||=1

||yTAT ||2 · ||Ax||2 by CS ineq

=
(
max
||y||=1

||yTAT ||2
)(

max
||x||=1

||Ax||2
)

= ||A||2 · ||A||2
= ||A||22

Combine these two things, we get ||A||22 = ||ATA||2

For the other equality, swap A and AT in the proof and use ||A||2 = ||AT ||2

Proposition 2.3.6
||A−1||2 is 1

|λ1| , where λ1 is the smallest magnitude eigenvalue of A

Proof
We know ||A−1||2 = ρ(A−1), and the eigenvalues of A−1 are the inverse of the eigenvalues of A

12



2.4 Positive Definite Matrices Scribe : Saiyue Lyu

2.4 Positive Definite Matrices

Definition 2.4.1 (Positive Definite & Positive Semidefinite)
A symmetric matrix A ∈ Rn×n is positive definite if xTAx > 0,∀x ∈ Rn, x ̸= 0, it is positive
semidefinite if xTAx ≥ 0,∀x ∈ Rn

Remark
pd. for symmetric positive definite, psd. for symmetric positive semidefinite

Proposition 2.4.1
For any A ∈ Rn×n(possibly non square), ATA is psd. Then the matrix ATA is pd iff A has full
column rank (i.e. rank(A) = n; which implies m ≥ n)

Proof
1) ATA is square and symmetric (immediate)

2) ATA is psd. : ∀x ∈ Rn, xT (ATA)x = (Ax)T (Ax) = ||Ax||22 ≥ 0

3) pd. iff rank(A) = n :

xTATAx > 0,∀x ∈ Rn, x ̸= 0

⇐⇒||Ax||22 > 0

⇐⇒||Ax||2 > 0

⇐⇒Ax ̸= 0, ∀x ∈ Rn, x ̸= 0

⇐⇒ the columns of A are linearly independent

⇐⇒rank(A) = n

Corollary 2.4.1
If A ∈ Rn×n is square, then ATA is pd. iff A is nonsingular

Proposition 2.4.2
A square symmetric matrix is psd. (rsp pd.) iff all its eigenvalues are ≥ 0 (rsp > 0)

Proof
We will prove the statement for psd/≥ 0, the proof is similar for pd/(¿0)

(⇒) Let λ be an eigenvalue of A psd. and let x be the corresponding nonzero eigenvector

Then xtAx ≥ 0, so xTλx = λ||x||22 ≥ 0

Thus λ ≥ 0

(⇐) Let λ1, · · · , λn be the eigenvalues of A and let x1, · · · , xn be the n (nonzero, real, mutually
orthogonal) eigenvectors.

For any y ∈ Rn, we can write

y =
∑
βixi for some βi ∈ R

13
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Then we have

yTAy = (
∑

βixi)
T ·A · (

∑
βixi)

= (
∑

βixi)
T (
∑

βiAxi)

= (
∑

βixi)
T (
∑

βiλixi)

=
∑

β2i λi||xi||22 as xi are orthogonal

≥ 0

Proposition 2.4.3
The inverse of a pd. matrix is pd.

Proof
Let λ1, · · · , λn > 0 be the eigenvalues of A pd.

Then the eigenvalues of A−1 are 1
λ1
, · · · , 1

λn

14



Chapter 3

Convexity

3.1 Basic Intro

Definition 3.1.1 (Convex Set)
A set C ⊂ Rn is convex if λx+ (1− λ)y ∈ C,∀x, y ∈ C,∀0 ≤ λ ≤ 1

Example 3.1.1
The set of two disjoint sets is nonconvex

A ”donut” is nonconvex

Definition 3.1.2 (Convex Function)
Let D ⊂ Rn be a convex set, a function f : D → R is said to be convex if f

(
λx + (1 − λ)y

)
≤

λf(x) + (1− λ)f(y), ∀x, y ∈ D,∀0 ≤ λ ≤ 1

A function is said to be strict convex if a strict inequality (<) holds as well

Example 3.1.2
y = x2 is a convex function, y = −x2 is non-convex (concave)

Proposition 3.1.1
1) For any collection of {Ci : i ∈ I} of convex sets, their intersection ∩i∈ICi is convex

2) The vector (Minkowski) sum {x+ y : x ∈ C1, y ∈ C2} of two convex sets C1, C2 is convex

3) The image of a convex set under a linear transformation is a convex set

Definition 3.1.3 (Level Set & Epigraph)
Let f : D → R be a function with D convex,

The level sets of f are {x ∈ D : f(x) ≤ α} for all α ∈ R (sometimes ” < ”)

The epigraph of f is s subset of Rn+1 given by epi(f) = {(x, α), x ∈ D,α ∈ R, f(x) ≤ α}

Proposition 3.1.2
1) If f : D → R is convex, then its level sets are convex as well

2) f : D → R is convex iff its epigraph is a convex set

Note : The converse of 1) is not true ! For example, f(x) =
√

|x|

15
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The level sets of f is
√
|x| ≤ α⇐⇒ |x| ≤ α2 ⇐⇒ −α2 ≤ x ≤ α2

However, f is not convex !

Proposition 3.1.3
1) Any linear function is convex (but not strictly convex)

2) If f is a convex function, then g(x) = λf(x) is convex for all λ ≥ 0

3) The sum of two convex functions is a convex function

4) The maximum of two convex functions is a convex function (does not work for minimum)

Proposition 3.1.4
Any vector norm is convex (this is useful as optimize convex function is usually possible)

Proof
Let f(x) = ||x||, then ∀x, y ∈ Rn, 0 ≤ λ ≤ 1, have

f
(
λx+ (1− λ)y

)
= ||λx+ (1− λ)y||
≤ ||λx||+ ||(1− λ)y||
= λ · ||x||+ (1− λ) · ||y||
= λf(x) + (1− λ)f(y)

3.2 Taloy’s Thms

Theorem 3.2.1 (Talor’s Thm For Uni-variate Functions)
f(x+h) =

∑k
i=0

hi

i! di(f), where di(f) is the i-th derivative of f and ϕ(x) = hk+1

(k+1)!di+1f(x+λh), 0 ≤
λ ≤ 1 is the residual function. In particular, limh→0

ϕ(h)
hk = 0

Theorem 3.2.2 (Talor’s Thm For Multivariate Functions – 1st order (k = 1))
f(x+h) = f(x)+hT∇f(x)+ϕ(h), where ϕ(h) = 1

2h
T∇2f(x+λh)h, 0 ≤ λ ≤ 1 with limh→0

ϕ(h)
||h|| = 0

Theorem 3.2.3 (Talor’s Thm For Multivariate Functions – 2nd order (k = 2))
f(x+ h) = f(x) + hT∇f(x) + 1

2h
T∇2f(x)h+ ϕ(h) with limh→0

ϕ(h)
||h||2 = 0

Theorem 3.2.4 (Mean Value Thm)
Let f : D → R, D ⊂ R, f ∈ C1(D), then ∀x, y ∈ D,∃z ∈ [x, y] such that f(y) = f(x)+∇f(z)(y−x)

Proof
By 0-th order Talor Expansion

Definition 3.2.1 (Directional Derivative)
The directional Derivative of f in the direction of y is ∇yf(x) = limα→0

f(x+αy)−f(x)
α

In particular, ∇eif(x) =
∂f
∂xi

(x) and ∇f =
(
∇e1f(x) · · · ∇enf(x)

)T
The ”direction” draws out the function

Theorem 3.2.5
Let f ∈ C1, then ∇hf = hT∇f

16
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Proof

∇hf = lim
α→0

f(x+ αh)− f(x)

α

= lim
α→0

f(x) + αhT∇f(x) + ϕ(αh)− f(x)

α

= lim
α→0

αhT∇f(x) + ϕ(αh)

α

= lim
α→0

αhT∇f(x)
α

+ lim
α→0

ϕ(αh)

α

= hT∇f(x) + lim
α→0

ϕ(αh)

α

= hT∇f(x) by definition of residual above

Proposition 3.2.1
Let D ⊂ Rn be convex and f : D → R be differentiable over D. Then f is convex iff f(z) ≥
f(x) + (z − x)T∇f(x), ∀x, z ∈ D

Proof
(=⇒) As D is convex, then x+ (z − x)α = αz + (1− α)x ∈ D,∀0 ≤ α ≤ 1

lim
α→0

f
(
x+ α(z − x)

)
− f(x)

α
= ∇z−xf(x) = (z − x)T f(x)

By convexity of f, ∀0 ≤ α ≤ 1

f
(
x+ α(z − x)

)
≤ αf(z) + (1− α)f(x)

f
(
x+ α(z − x)

)
− f(x) ≤ αf(z)− αf(x)

f
(
x+ α(z − x)

)
− f(x)

α
≤ f(z)− f(x)

Taking the limα→0

(z − x)T∇f(x) ≤ f(z)− f(x)

(⇐=) If f(z) ≥ f(x) + (z − x)T∇f(x),∀x, z ∈ D

Let a, b ∈ D be any points in the domain of f , let c := αa+ (1− α)b

f(a) ≥ f(c) + (a− c)T∇f(x) (3.1)

f(b) ≥ f(c) + (b− c)T∇f(x) (3.2)

17
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Multiply (3.1) by α and (3.2) by (1− α), then add them together, we get:

αf(a) + (1− α)f(b) ≥ α
(
f(c) + (a− c)T∇f(c)

)
+ (1− α)

(
f(c) + (b− c)T∇f(c)

)
≥ f(c) + α(a− c)T∇f(c) + (1− α)(b− c)T∇f(c)
≥ f(c) + (αa− αc+ b− αb− c+ αc)T∇f(c)
≥ f(c) + (αa+ b− αb− c)T∇f(c)
≥ f(c)

≥ f
(
αa+ (1− α)b

)
Hence f is convec over D

Proposition 3.2.2
Let f : Rn → R, f ∈ C2(D), then

(1) If ∇2f(x),∀x ∈ D is p.s.d., then f is convex over D

(2) If ∇2f(x),∀x ∈ D is p.d., then f is strict convex over D

(3) If D = Rn and f is convex over Rn, then ∇2f(x), ∀x ∈ D is p.s.d.

Proof
(1) ∀x, y ∈ D, by 1st order Taylor

f(y) = f(x) + (y − x)T∇f(x) + 1

2
(y − x)T∇2f

(
x+ α(y − x)

)
(y − x), 0 ≤ α ≤ 1

(2) Similar to (1) with y ̸= x, strict inequality

(3) Suppose for contradiction that ∃x, z ∈ Rn such that zT∇2f(x)z < 0

Since ∇2f(x) is continuous, we can find a z small enough that zT∇2f(x+ αz)z < 0,∀0 ≤ α ≤ 1

By Taylor

f(x+ z) = x(x) + zT∇f(x) + 1

2
zT∇2f(x+ βz)z, 0 ≤ β ≤ 1

< f(x) + zT∇f(x)

Which contradicts convexity
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Chapter 4

Optimality Conditions

Definition 4.0.1 (Critical/Stationary Points)
All x such that ∇f(x) = 0 are called critical or stationary points

All local minimizers are critical points, but the converse is not always true

Remark
∇2f is symmetric since

∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

Theorem 4.0.1 (First Order Necessary Conditions For Optimality)
Let f : Rn → R be C1-smooth. If x∗ is a local minimizer, then ∇f(x∗) = 0

Proof
Let Bδ(x

∗) be such that f(x∗) ≤ f(x),∀x ∈ Bδ(x
∗)

∀i,∀|h| < δ, f(x∗ + h · ei)− f(x∗) ≥ 0

Hence f(x∗+h·ei)−f(x∗)
h ≥ 0 if h > 0

f(x∗+h·ei)−f(x∗)
h ≤ 0 if h < 0

Since f ∈ C1, then limh→0
f(x∗+h·ei)

h exists

If both ≥ 0,≤ 0 hold, then = 0 hold

Hence ∂f
∂xi

(x∗) = 0, ∀i

Therefore ∇f(x∗) = 0

Theorem 4.0.2 (Second Order Necessary Conditions For Local Optimality)
Let f : Rn → R be C2-smooth. If x∗ is a local minimizer, then ∇f(x∗) = 0 and ∇2f(x∗) is p.s.d.

Proof
Let z ∈ Rn\{0}, we need to prove zT∇2f(x∗)z ≥ 0

Let Bδ(x
∗) be such that f(x∗) ≤ f(x),∀x ∈ Bδ(x

∗)
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Let y := h · z
||z|| with 0 < h < δ, then we have

f(x∗ + y)− f(x∗) ≥ 0

f(x∗) + yT∇f(x∗) + 1

2
yT∇2f(x∗)y + ϕ(x)− f(x∗) ≥ 0 where lim

y→0,y ̸=0

ϕ(y)

||y||
= 0

By 1st order condition, we have yT∇f(x∗) = 0, hence we have

1

2

h2

||z||2
zT∇2f(x∗)z + ϕ(h

z

||z||
) ≥ 0

zT∇2f(x∗)z + 2||z||2 1

h2
ϕ(h

z

||z||
) ≥ 0

Take the limit when h→ 0, by Talor, we have

lim
h→0,h̸=0

ϕ(h · z
||z||)

h2
= 0

Therefore we have zT∇2f(x∗)z ≥ 0

Theorem 4.0.3 (Second Order Sufficient Conditions For Local Optimality)
Let f : Rn → R ∈ C2

(
Bδ(x

∗)
)
, x∗ ∈ R, δ > 0. If ∇f(x∗) = 0 and ∇2f(x∗) is p.d., then x∗ is a strict

local minimizer

Proof
By Talor 2nd order, ∀h ∈ Bδ(x

∗)

f(x∗ + h) = f(x∗) + hT∇f(x∗) + 1
2h

T∇2f(x∗)h+ ϕ(x) where limh→0,h̸=0
ϕ(h)
||h|| = 0

Let 0 < λ1 < · · · < λn be the positive eigenvalues of ∇2f(x∗)

By the definition of limit

∃r > 0 : ∀h ∈ Br(x
∗), | ϕ(x)

||h||2
| ≤ λ1

4
⇐⇒ |ϕ(x)| ≤ ||h||2λ1

4

Remember that,

||y||2 · λ1 ≤ yT∇2f(x∗)y ≤ ||y||2 · λn

Also by assumption, ∇f(x∗) = 0, then we have

f(x∗ + h) = f(x∗) +
1

2
hT∇2f(x∗)h+ ϕ(h)

≥ f(x∗) +
1

2
||h||2λ1 − ||h||2λ1

4

= f(x∗) +
1

4
||h||2 · λ1

> f(x∗) for all h ∈ Br(x
∗)\{0}

Therefore x∗ is a strict local minimizer over Br(x
∗)
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4.1 Summary For Necessary And Sufficient Optimality Conditions{
∇f(x∗) = 0

∇2f(x∗) p.d.

(1)−−→

x∗ is a strict local minimizer

(2)−−→

x∗ is a local minimizer

(3)−−→ {
∇f(x∗) = 0

∇2f(x∗) p.s.d.

The converses of (1), (2), (3) are all false!!!

Counterexamples:

(1) f(x) = x4 at x∗ = 0

(2) f(x) = 1 at x∗ = 0

(3) f(x) = x3 at x∗ = 0

Theorem 4.1.1
Let C ⊂ Rn be a convex set, and f : C → R be a convex function. A local minimizer of f is also a
global minimizer. If f is strictly convex, then there is at most one global minimizer

Proof
Suppose x∗ is a local minimizer, and y∗ is a global minimizer with f(y∗) ≤ f(x∗)

By convexity of f , have

f
(
αy∗ + (1− α)x∗

)
≤ α · f(y∗) + (1− α) · f(x∗)
= f(x∗) + α ·

(
f(y∗)− f(x∗)

)
< f(x∗),∀0 ≤ α ≤ 1

Thus, ∀r > 0,∃z ̸= x∗ such that ||z − x∗|| < r and f(z) < f(x∗)

For instance, z = α · y∗ + (1− α) · x∗ with α = r
2||y∗−x∗||

Thus x∗ is not a local minimizer, which is a contradiction

Therefore f(y∗) ≥ f(x∗)

4.2 P.S.D

Theorem 4.2.1 (Spectral Decomposition of Symmetric P.S.D.)
∀A ∈ Rn×n symmetric, ∃D,Q ∈ Rn×n such that
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(1) D is Diagonal, its diagonal entries are eigenvalues of A

(2) Q is orthogonal, i.e. Q−1 = QT

(3) A = QDQT

Proof
Let λ1, · · · , λn be the eigenvalues of A and x1, · · · , xn be their corresponding eigenvectors

Then ∀i = 1, · · · , n,Axi = λixi, thus

A ·


x1
x2
...
xn


T

=


λ1x1
λ2x2
...

λnxn


T

=


x1
x2
...
xn


T

·


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

 =


x1
x2
...
xn


T

· diag(λ1, · · · , λn)

As A is symmetric, these xi’s are mutually orthogonal, i.e. xixj = 0 when i ̸= j

WLOG, assume ||xi|| = 1

Let Q =
[
x1 x2 . . . xn

]
, then QTQ = I

Let D = diag(λ1, · · · , λn)

We get AQ = QD, thus A = QDQ−1 = QDQT

Theorem 4.2.2 (Cholestic Decomposition)
Let A ∈ Rn×n be symmetric, then

A is p.s.d. ⇐⇒ ∃G ∈ Rn×n such that A = GGT

Proof
(=⇒) Assume A = QDQT by the previous thm, where QT = Q−1 and D is diagonal

Denote
√
D = diag(

√
D11, · · · ,

√
Dnn)

Let G = Q ·
√
D

Then GGT = Q
√
D(Q

√
D)T = Q

√
D
√
D

T
QT = QDQT = A

(⇐=) Assume A = GGT

Note that ∀M ∈ Rn×n,MTM is p.s.d.

Let M = GT

Observations :

(1) If
√
D =

[
d 0
0 0

]
, then G = Q

√
D =

[
Q11 Q12

Q21 Q22

]
·
[
d 0
0 0

]
=

[
Q11d 0
Q21d 0

]
So Ḡ =

[
Q11d
Q21d

]
satisfies ḠḠT = A

(2) If A is p.d., then
√
D is invertible

Since Q is always invertible, we get G+Q
√
D ∈ Rn×n is also invertible
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Definition 4.2.1 (Bounded Set & Closed Set & Compact Set)
(1) A set S ⊂ Rn is bounded if S ⊂ Bδ(0) for some δ finite

(2) A set S ⊂ Rn is closed if for any sequence x1, x2, · · · ∈ S such that limi→∞ xi exists, then
limi→∞ xi ∈ S

(3) A set is compact if it is bounded and closed

Theorem 4.2.3 (Existence of A Global Minimizer)
If S ⊂ Rn is nonempty and compact and f : S → R is continuous, then ∃ y, z ∈ S such that
f(y) ≤ f(x) ≤ f(z),∀x ∈ S

Theorem 4.2.4 (Continuous Leads To Closed Level Set)
If f is continuous, then its level sets are closed

Proof
Let S = {x ∈ Rn : f(x) ≤ α} be any level set

For any sequence x1, x2, · · · ∈ S, we have f(xi) ≤ α. then by the continuity of f

f( lim
i→∞

xi) = lim
i→∞

f(xi) ≤ α

Thus limi→∞ xi ∈ S

Theorem 4.2.5 (Continuous And Bounded Level Set Gives Global Minimizer)
If f : Rn → R is continuous and has at least one bounded nonempty level set, then f has a global
minimizer

Proof
Let α be such that S = {x ∈ Rn : f(x) ≤ α} is bounded nonempty

By Thm 4.2.4, S is closed, thus compact

By Thm 4.2.3, f has a ”global” minimizer over S :

∃ y ∈ S : f(y) ≤ f(x),∀x ∈ S

Consider all points x ∈ Rn\{S}, we have f(x) > α ≥ f(y)

Thus f(y) ≤ f(x),∀x ∈ Rn

Example 4.2.1 (Functions without global minimizers)
Want to show each level set is either unbounded or empty

(1) f(x) = 2x, pick any α, see that the level set is unbounded

(2) f(x) = ex, if α = 2, then S = {x ∈ R : x ≤ ln 2}, if α < 0, then S = ∅

Definition 4.2.2 (Coercive Function)
A function f : Rn → R is coercive if all its level sets are bounded

Note : If f is coercive, unless f(x) = ±∞, ∀x, then it has a global minimizer.
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Theorem 4.2.6 (Equivalence of Coercive)
Let f : Rn → R be a continuous function, TFAE:

(1) f is coercive

(2) ∀r ∈ R,∃m > 0 such that ||x|| ≥ m ⇒ f(x) ≥ r (If we want f above r, x has to be m−far
away from origin

Proof
(2) ⇒ (1) Consider S = {x ∈ Rn : f(x) ≤ α}

By (2), let r = α+ 1, we have

∃m > 0 : ||x|| ≥ m ⇒ f(x) ≥ α+ 1

So S ⊂ Bm(0), i.e. S is bounded. The reasoning holds for all α

(1) ⇒ (2) For any given r, consider T = {x ∈ Rn : f(x) ≤ r} bounded by assumption

Hence ∃ δ > 0 such that T ⊂ Bδ(0)

For all x such that ||x|| ≥ δ + 1, must have x /∈ T , thus f(x) > r

Letting m = δ + 1 and we are done

Example 4.2.2
Let A ∈ Rm×n be of rank n, then f(x) = ||Ax− b|| with b ∈ Rm is coercive

Trick f(x) = ||Ax− b|| ≥ ||Ax|| − ||b|| by the triangle inequality

Note ATA is P.S.D, in fact, p.d. because A is full rank (Proposition 2.4.1)

f(x) ≥ ||Ax|| − ||b|| =
√
(Ax)T (Ax)− ||b||

=
√
xT (ATA)x− ||b||

≥
√
λ1||x||2 − ||b|| by Proposition 2.3.3

≥
√
λ1||x|| − b

So given any r > 0, we have f(x) ≥ r when ever ||x|| ≥ r+||b||√
λ1
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Chapter 5

Unconstrained Quadratic Optimization

5.1 Quadratic Functions

Definition 5.1.1 (Quadratic Function)
A quadratic function takes the form q(x) = xTAx+ bTx+ c for any A ∈ Rn×n, b ∈ Rn, c ∈ R, where
xTAx =

∑
i,j Aijxixj

We can assume WLOG that A is symmetric.

Theorem 5.1.1 (Generalization When A is not symmetric in the quadratic form)
Let A ∈ Rn×n and let G be the symmetric part of A, i.e. G := (A+AT )/2. Then

(1) G is symmetric and (2) q(x) = xTGx+ bx+ c,∀x ∈ Rn

Proof
(1) Let’s compute the transpose of G

GT = (
A+AT

2
)T =

1

2
(A+AT ) = G

(2) Observe that xTAx is scalar so (xTAx)T = xTATx, then

xTAx =
xTAx

2
+
xTAx

2
=
xTAx

2
+
xTATx

2
=

1

2
xT (A+AT )x = xTGx

Definition 5.1.2 (Range & Kernel)
The range (or column space) of A ∈ Rm×n is Range(A) = {Ax : x ∈ Rn}

The kernel (or null space)of A ∈ Rm×n is Null(A) = {x : Ax = 0, x ∈ Rn}

Theorem 5.1.2 (Relation of Range and Null)
Let C ∈ Rm×n. If y ∈ Range(CT ) and z ∈ Null(C), then yT z = 0

Proof
Since y ∈ Range(CT ), then ∃x ∈ Rm such that y = CTx, hence

yT z = (CTx)T z = xT Cz︸︷︷︸
0 since z∈Null(C)

= 0
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Theorem 5.1.3 (Decomposition of any vector (follows the fundamental thm of linear algebra))
Let C ∈ Rm×n For any ω ∈ Rn, there exists y ∈ Range(CT ) and z ∈ Null(C) unique such that
ω = y + z

Proof
Let ω = y + z + b, where y ∈ Range(CT ), z ∈ Null(C), b ∈ Range(CT )⊥ ∩Null(C)⊥

The decomposition is unique since Range(CT ) ⊥ Null(C) ⊥ b

Consider Cb ∈ Rm, then CT (Cb) ∈ Range(CT )

Hence b ⊥ CT (Cb) as b ∈ Range(CT )⊥

Thus 0 = bT
(
CT (Cb)

)
= (Cb)T (Cb) = ||Cb||22

So Cb = 0, then b ∈ Null(C)

We get b ∈ Null(C) ∩Null(C)⊥, therefore b = 0

Derivative of q(x)

(1) ∂
∂xk

bTx = bk,∇bTx = b

(2) ∂
∂xk

xTAx = ∂
∂xk

∑
i,j Aijxixj =

∂
∂xk

(
∑

j ̸=k Akjxkxj +
∑

i ̸=k Aikxixk +Akkx
2
k)

(as A is symmetric) = ∂
∂xk

(
∑

j ̸=k Akjxkxj +
∑

i ̸=k Akixixk +Akkx
2
k)

= ∂
∂xk

(2
∑

j ̸=k Akjxkxj +Akkx
2
k)

= 2
∑

j ̸=k Akjxj + 2Akkxk = 2
∑

j Akjxj

= kth row of 2Ax

∇xTAx = 2Ax

(3) ∇2bTx = 0

(4) ∂2

∂xk∂xl
xTAx = ∂

∂xl
(2

∑
j Akjxj) = 2Akl, ∇2xTAx = 2A

Theorem 5.1.4
Given A ∈ Rn×n be symmetric, b ∈ Rn, c ∈ R, let q(x) = xTAx+ bx+ c

(1) If A is p.d., then q(x) has a unique global minimizer x∗ = −1
2A

−1b

(2) If A is p.s.d. and b ∈ Range(A), then q(x) has a global minimizer

(3) Otherwise, q(x) has no global minimizer, i.e. q(x) → −∞ for some ||x|| → +∞

Proof
Necessary Conditions:

x∗ local minimizer =⇒

{
∇q(x∗) = 0

∇2q(x∗) p.s.d.
=⇒

{
2Ax∗ + b = 0

2A, i.e.A p.s.d.

(1) Assume A is p.d., then all eigenvalues > 0, thus A−1 exists

There is a unique critical point (i.e. point where ∇q = 0) x∗ = −1
2A

−1b
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It is a local minimizer since ∇2q(x∗) = A is p.d. (see sufficient conditions)

Note that for any h ∈ Rn

x∗
T
Ah = (x∗

T
Ah)T = hTATx∗ = hTAx∗ (5.1)

Hence we have

q(x∗ + h) = (x∗ + h)TA(x∗ + h) + bT (x∗ + h) + c

= x∗
T
Ax∗ + x∗

T
Ah+ hTAx∗ + hTAh+ bTx∗ + bTh+ c

= (x∗
T
Ax∗ + bTx∗ + c) + (x∗

T
Ah+ hTAx∗) + hTAh+ bTh

= q(x∗) + 2hTAx∗ + hTAh+ bTh by (5.1)

= q(x∗) + 2hTA(−1

2
A−1b) + hTAh+ bTh

= q(x∗)− hT b+ hTAh+ bTh

= q(x∗) + hTAh

≥ q(x∗)

(2) b ∈ Range(A) =⇒ −1
2b ∈ Range(A), so Ax∗ = −1

2b for some x∗

Hence x∗ satisfies ∇g(x∗) = 2Ax∗ + b = 0

Then same proof as (1), q(x∗ + h) ≥ q(x∗), ∀h ∈ Rn

(3.1) Assume A is p.s.d but b /∈ Range(A)

We try to find a direction z that q goes to −∞

Write b = y + z uniquely with y ∈ Range(AT ) = Range(A), z ∈ Null(A), z ̸= 0 since b /∈
Range(A)

For any λ ∈ R

q(λz) = λ2zT Az︸︷︷︸
=0

+λbT z + c

= λ(y + z)T z + c

= λ yT z︸︷︷︸
=0

+λzT z + c

= λ ||z||22︸︷︷︸
>0 since z ̸=0

+c

For λ→ −∞, we get q(λz) → −∞

(3.2) Assume A is not p.s.d., then ∃v ∈ Rn, vTAv < 0

Still we want to find a direction

Let ω ∈ Rn with ω =

{
v if bT v ≥ 0

−v if bT v < 0
, we have ωTAω < 0 and bTω ≥ 0
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For any λ ∈ R, q(λω) = λ2 ωTAω︸ ︷︷ ︸
<0

+λ bTω︸︷︷︸
≥0

+c

Take λ→ −∞, we get q(λω) → −∞
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Chapter 6

Least Squares Problem

Given a1, · · · , am ∈ Rk, b1, · · · , bm ∈ R, find a function h : Rk → R such that h(ai) ≈ bi,∀i

Least Squares : Minimize
∑

i

(
h(ai)− bi

)2
Goal : Determine the best h among a family of functions, parametrized by x ∈ Rn :

min
x∈Rn

∑
i

(
hx(ai)− bi

)2
Let f(x) =

∑
i

(
hx(ai)− bi

)2
,minx∈Rn f(x)

6.1 Linear Least Squares

hx(ai) = x1ai1 + x2ai2 + · · ·+ xkaik = aTi x in 1 dimension :
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hx(a) = ax

• (a1, b1)

• (a2, b2)

• (a3, b3)

x

y

Note : How to get a hyperplane (or line) that does not contain the origin?

Let n = k + 1, ai,k+1 = 1, ∀i, then hx(ai) = x1ai1 + · · ·+ xkaik + xk+1

f(x) =
∑
i

(aTi x− bi)
2 = (Ax− b)2 = (Ax− b)T (Ax− b) = ||Ax− b||22

= xTATAx− xTAT b− bTAx+ bT b

= xT (ATA)x− (2AT b)Tx+ bT b

Thus f(x) is a quadratic function

If rank(A) = n, we have seen that ||Ax− b||2 is coercive, so it has a global minimizer.

If rank(A) = n and ATA is p.d., then f(x) has a global minimizer

x∗ = −1
2(A

TA)−1(−2AT b) = (ATA)−1AT b

6.2 Nonlinear Least Squares

Let g : Rn → Rm with gi(x) = hx(ai)− b, we have f(x) =
∑

i

(
gi(x)

)2
= g(x)T g(x)

Definition 6.2.1 (Jacobian Matrix)
The Jacobian matrix of g is given by J(x) =

∇g1(x)T
...

∇gm(x)T

 =


∂

∂x1
g1(x) · · · ∂

∂xn
g1(x)

...
. . .

...
∂

∂x1
gm(x) · · · ∂

∂xn
gm(x)


∂

∂xk
f(x) =

∂

∂xk

∑
i

(
gi(x)

)2
=

∑
i

2gi(x)
∂

∂xk
gi(x)

= 2eTk J(x)
T gi(x)

Thus ∇f(x) = 2J(x)T g(x) (think about Chain Rule)
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Remark
If gi(x

∗) = 0, then ∇f(x∗) = 0 and x∗ is a global minimizer

∂2

∂xk∂xl
g(x) =

∂

∂xl
2
(∑

i

gi(x)
∂

∂xk
gi(x)

)
= 2

∑
i

( ∂

∂xl
gi(x)

∂

∂xk
gi(x) + gi(x)

∂2

∂xk∂xl
gi(x)

)
∇2f(x) =

(
2
∑
i

gi(x)∇2gi(x)︸ ︷︷ ︸
not necessary p.d.

)
+ 2 J(x)TJ(x)︸ ︷︷ ︸

p.s.d
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Chapter 7

Descent Algorithms

General Framework

Choose x0 ∈ Rn

for k = 0, 1, 2, · · ·
Choose a search direction pk ∈ Rn

Choose a step length αk > 0

Let xk+1 = xk + αkpk

Remark
αk is not α to the power k, same for pk, xk. Also the objective function f(xk+1) should be much

smaller than f(xk) and xk converges as fast as possible

Steepest Descent pk = −∇f(xk)

Lemma 7.0.1 (From Limit to Bound)
Let limϵ→0,ϵ>0

ϕ(ϵh)
ϵ = 0 for any K > 0, there exists ϵ small enough such that |ϕ(ϵh)| ≤ ϵK

Proof
For any K > 0, there exists γ > 0 such that |ϕ(ϵh)ϵ − 0| ≤ K,∀0 < ϵγ, i.e.

|ϕ(ϵh)| ≤ ϵK,∀0 < ϵ < γ

Thus ϵ sufficiently small is ϵ ≤ γ

Theorem 7.0.1
Let f ∈ C1

(
Bt(x

k)
)
, t > 0 and ∇f(xk) ̸= 0. Consider the optimization problem, for some 0 < ϵ <

t,min{f(xk + ϵp) : ||p||2 = 1}. Let p∗ be a minimizer, then limϵ→0 p
∗
ϵ = − ∇f(xk)

||∇f(xk)||
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Proof
Let x = xk, p = − ∇f(x)

||∇f(x)||2 , hence ∇f(x) = −p||∇f(x)||

Let u ∈ Rn with ||u||2 = 1, u ̸= p, so ||u− p|| > δ > 0, hence

(u− p)T (u− p) > δ2

uTu− 2uT p+ pT p > δ2

2− 2uT p > δ2

uT p < 1− δ2

2

First use Taylor to write f(x+ ϵu)

f(x+ ϵu) = f(x) + ϵuT∇f(x) + ϕ(ϵu), with lim
ϵ→0

ϕ(ϵu)

ϵ
= 0

= f(x)− ϵ||∇f(x)||uT p+ ϕ(ϵu)

≥ f(x)− ϵ||∇f(x)||(1− δ2

2
) + ϕ(ϵu)

Now we want to get rid of ϕ(ϵu). For ϵ small enough, by Lemma 7.0.1, we have

|ϕ(ϵu)| ≤ ϵ(||∇f(x)||δ
2

4
)

ϕ(ϵu) ≥ −ϵ||∇f(x)||δ
2

4

Hence we have a lower bound

f(x+ ϵu) ≥ f(x)− ϵ||∇f(x)||(1− δ2

2
)− ϵ||∇f(x)||δ

2

4

= f(x)− ϵ||∇f(x)||+ ϵ
δ2

4
||∇f(x)||

Then use Taylor to write f(x+ ϵp)

f(x+ ϵp) = f(x) + ϵpT∇f(x) + ϕ(ϵp), with lim
ϵ→0

ϕ(ϵp)

ϵ
= 0

= f(x)− ϵ||∇f(x)||pT p+ ϕ(ϵp)

= f(x)− ϵ||∇f(x)||+ ϕ(ϵp)

Again, for ϵ small enough, combined with the lower bound, we choose our magic upper bound

|ϕ(ϵp)| ≤ ϵ
δ2

5
||∇f(x)||

ϕ(ϵp) ≤ ϵ
δ2

5
||∇f(x)||

Hence we have a upper bound

f(x+ ϵp) ≤ f(x)− ϵ||∇f(x)||+ ϵ
δ2

5
||∇f(x)||
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Using two bounds, we have

f(x+ ϵp) ≤ f(x)− ϵ||∇f(x)||+ ϵ
δ2

5
||∇f(x)|| ≤ f(x)− ϵ||∇f(x)||+ ϵ

δ2

4
||∇f(x)|| ≤ f(x+ ϵu)

Therefore f(x+ ϵp) is the minimizer

Definition 7.0.1 (Descent Direction)
pk is a descent direction if f(xk + ϵpk) < f(xk), for all ϵ small enough

Theorem 7.0.2
Let xk be such that ∇f(xk) ̸= 0, if (pk)T∇f(xk) < 0, then pk is a descent direction

Proof
Let p = pk, WLOG, ||p|| = 1, by Taylor, have

f(xk + ϵp) = f(x) + ϵpT∇f(xk) + ϕ(ϵp), with lim
ϵ→0

ϕ(ϵp)

ϵ
= 0

For ϵ small enough, |ϕ(ϵp)| ≤ ϵ|12p
T∇f(xk)| = −ϵ12p

T∇f(xk)

Hence we have

f(xk + ϵp) ≤ f(xk) +
1

2
ϵpT∇f(x) < f(xk)

7.1 Line Search

Once pk is chosen, determine αk such that xk+1 = xk + αk + pk

• Exact Line Search : αk = argminα≥0{f(xk + αpk)}

We define ψ(α) = f(xk + αpk)

Note :

ψ(0) = f(xk) and once αk is chosen, ψ(αk) = f(xk+1)

ψ′(α) = d
dαψ(α) = ∇f(xk + αpk)T pk (directional derivative)

ψ′(0) = ∇f(xk)T pk < 0 since we assume pk is a descent direction

Sufficient Decrease Condition : Fix 0 < σ < 1
2 , α must satisfy that :

ψ(α) ≤ ψ(0) + σαψ′(0)

Curvature Condition (Scveral Variants)

ψ(2 · α) > ψ(0) + σ2αψ′(0)

Armijo (”backtrack”) Inexact Linea Search
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Let α := 1

If α fails sufficient decrease

While α fails sufficient decrease

α := α/2

Else α fails curvature condition

While α fails curvature condition

α := α · 2
Theorem 7.1.1
Let f ∈ C1,∇f(xk) ̸= 0 and let pk be a descent direction, then

Either the Armijo Algorithm terminates and α satisfies both conditions

Or α→ +∞ and f is unbounded below (f(xk) → −∞)

Proof
• If the first loop terminates, α satisfies sufficient decrease and 2α fails it, i.e. α satisfies curvature
condition

We need to show that the first loop terminates:

ψ(α) = ψ(0) + α · ψ′(0) + ϕ(α)
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For α sufficient small, by Lemma 7.0.1, (note ψ′(0) < 0), have

|ϕ(α)| ≤ α|1
2
ψ′(0)|

ϕ(α) ≤ −α1
2
ψ′(0)

Thus ψ(α) ≤ ψ(0) + 1
2ψ

′(0) · α

• If the second loop terminates, α satisfies curvature condition, α
2 fails it, i.e. α satisfies sufficient

decrease

• If the second loop does not terminate,

ψ(2j) ≤ ψ(0) + 2jσ ψ′(0)︸ ︷︷ ︸
<0

,∀j ∈ Z+

Thus ψ(2j) → −∞ for j → +∞

• If we did not go in either loop, α = 1 satisfies both conditions

Definition 7.1.1 (Lipschitz Continuous)
A function f : Rn → R is Lipschitz continuous with constant L if |f(y)−f(x)| ≤ L · ||y−x||,∀x, y ∈
Rn

Note : Lipschitz continuous implies C0 continuous, but the converse is not true.

Theorem 7.1.2
Let f ∈ C1

(
Bδ(0)

)
, f is Lipschitz continuous with constant L on Bδ(0) if and only if ||∇f(x)|| ≤

L,∀x ∈ Bδ(0)

Theorem 7.1.3 (Zoutendijk’s Thm)
Let f : Rn → R with f ∈ C1(Rn). If

(1) ∇f is Lipschitz continuous

(2) ∀k, pk is a descent direction with ∇f(xk)T pk ≤ −µ||∇f(xk)||2 · ||pk||2 for some 0 < µ ≤ 1. This
means if µ = 1, then pk would be the steepest direction (think of vector dot product, µ would be
a cosine of an angle)

(3) ∀k, αk satisfies both decrease and curvature condition

Then either (a) limk→∞ f(xk) = −∞, or (b) limk→∞∇f(xk) = 0

Proof
We will prove there is no other situation (c), i.e. if (b) does not happen, then (a) does

Note that (b) limk→∞∇f(xk) = 0 can be stated in the following way

∀ϵ > 0, ∃K ≥ 0 : ∀k ≥ K, ||∇f(xk)|| < ϵ

If instead (b) does not happen, i.e. limk→∞∇f(xk) does not exists or not equal to 0, then

∃ϵ > 0 , ∀K > 0, , ∃ k ≥ K : ||∇f(xk)|| ≥ ϵ (7.1)
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In the rest of the proof, we will show that (7.1) implies f(xk+1) ≤ f(xk) − δ for some constant
δ > 0, thus f(xk) → −∞

We need to find a upper bound of ψ(αk), note that ψ′(0) < 0, we must find a lower bound of αk

Now consider for some 0 < σ < 1
2 , the curvature condition gives:

ψ(2αk) > ψ(0) + 2αkσψ′(0)

And the mean value thm

∃ 0 ≤ γ ≤ 2αk ψ(2αk) = ψ(0) + 2αkψ′(γ)

Together we have

ψ′(γ) > σψ′(0)

∇f(xk + γpk)T pk > σ∇f(xk)T pk (7.2)

Then consider Lipschitz gives

||∇f(xk + γpk)−∇f(xk)|| ≤ L · γ||pk||

And the CS inequality gives

[∇f(xk + γpk)−∇f(xk)]T pk ≤ ||∇f(xk + γpk)−∇f(xk)|| · ||pk||
≤ L · γ||pk||2

∇f(xk + γpk)T pk ≤ ∇f(xk)T pk + L · γ||pk||2 (7.3)

Combined (7.2) and (7.3) together, have

∇f(xk)T pk + L · γ||pk||2 > σ∇f(xk)T pk

L · γ||pk||2 > (σ − 1)∇f(xk)T pk

L · γ||pk||2 > (σ − 1)ψ′(0)

γ >
(1− σ)(−ψ′(0))

L · ||pk||2

Recall that 0 ≤ γ ≤ 2αk, thus αk ≥ γ/2, hence finally we get an lower bound for αk

αk >
(1− σ)(−ψ′(0))

2L · ||pk||2

Now we show the sufficient decrease

ψ(αk) ≤ ψ(0) + σαkψ′(0)

≤ ψ(0) + σ
(1− σ)(−ψ′(0))

2L · ||pk||2
ψ′(0) note ψ′(0) < 0

= ψ(0)− σ(1− σ)

2L
·
( ψ′(0)

||pk||2
)2
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By hypothesis (
ψ′(0)

)2
=

(
∇f(xk)T pk

)2 ≥ µ2 · ||∇f(xk)||2 · ||pk||2

Hence we have

ψ(αk) ≤ ψ(0)− σ(1− σ)

2L
· µ2 · ||∇f(xk)||2

By (7.1), ||∇f(xk)|| ≥ ϵ, so

ψ(αk) ≤ ψ(0)− σ(1− σ)µ2ϵ2

2L

f(xk + αkpk) ≤ f(xk)− σ(1− σ)µ2ϵ2

2L

• We now have a complete algorithm:

Start at an arbitrary x0 ∈ Rn

For k = 1, 2, · · ·

Choose pk such that ∇f(xk)T pk ≤ −µ · ||∇f(xk)|| · ||pk||, for some 0 < µ ≤ 1

for example pk := −∇f(xk), the steepest descent

Choose αk with Armijo inexact line search

Let xk+1 := xk + αkpk

If (f(xk+1 < −M) or (||∇f(xk+1)|| ≤ ϵ)

STOP

7.2 Convergence of Descent Algorithms

Definition 7.2.1 (Converge Degree)
A sequence s0, s1, · · · converges with degree d to 0 if |sk+1| ≤ C · |sk|d. Convergence is said to be
linear if d = 1 and quadratic if d = 2

Definition 7.2.2 (Strongly Convex)
A function f ∈ C1(Rn) is strongly convex if

(
∇f(y) − ∇f(x)

)T
(y − x) ≥ l · ||y − x||2, ∀x, y ∈ Rn

for some l > 0

Lemma 7.2.1
If f is strongly convex, then ||∇f(y)−∇f(x)||2 ≥ l · |f(y)− f(x)|,∀x, ty ∈ Rn

Lemma 7.2.2 (Assignment 1 Q2)
Let f ∈ C2(Rn), f is strongly convex if and only if

(
∇2f(x)− l · I

)
is p.s.d. for all x ∈ Rn

Lemma 7.2.3
Any strongly convex function is strictly convex
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Theorem 7.2.1
Assume the same condition as Zoutendijk’s Thm, if in addition, f is strongly convex, then f(xk)
converges linearly to a local( global ) minimizer f(x∗)

Proof
From the previous proof we have

f(k+1) ≤ f(xk)− σ(1− σ)µ2

2L
||∇f(xk)||2

f(k+1)− f(x∗) ≤ f(xk)− f(x∗)− σ(1− σ)µ2

2L
||∇f(xk)||2

By Lemma 7.2.1, ||∇f(xk)−∇f(x∗)︸ ︷︷ ︸
0

||2 ≥ l · |f(xk)− f(x∗)|

I.e. we get an lower bound ||∇f(xk)||2 ≥ l ·
(
f(xk)− f(x∗)

)
, hence

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− σ(1− σ)µ2

2L
|| · l ·

(
f(xk)− f(x∗)

)
≤

(
f(xk)− f(x∗)

)
(1− σ(1− σ)µ2l

2L
)︸ ︷︷ ︸

>0,<1

Thus the sequence
(
f(xk)− f(x∗)

)
converges linearly to 0

Theorem 7.2.2
For a strongly convex quadratic function, the steepest descent method with exact line search has

||xk − x∗|| converges linearly to 0. Also this bound is tight, i.e. cannot converge with d > 1

Thm 7.2.1 shows that in many cases, the sequence converges linearly and Thm 7.2.2 shows that
not many can converge over linealy, this leads to the next section

7.3 Newton Step

Consider a quadratic approximation of f at xk :

f(xk + h) ≈ q(h) = f(xk) + hT∇f(xk) + 1

2
hT∇2f(x)h

If( and only if ) ∇f2(xk) is p.d., q(h) has a unique minimizer h = −[∇2f(xk)]−1∇f(xk)

The newton step is given by taking pk = −[∇2f(xk)]−1∇f(xk), note clearly it only works if the
∇2(fk) is p.d.

Definition 7.3.1 (Linearly & Quadratic Convergence)
A sequence s0, s1, · · · converges linearly to zero if |sk+1| ≤ C · |sk| for some 0 < C < 1, the sequence

converges quadratically if |sk+1| ≤ C · |sk|2 for some C > 0

Note : Newton’s Method : xk+1 = xk −∇2f(xk)−1∇f(xk)
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Lemma 7.3.1
Let F : Rn → Rm×m be continuous over Br(x0) for some x0 ∈ Rn such that F (x0) is nonsingular.
Then there exists R > 0 such that F (x) is invertible for all x ∈ BR(x0) and F (x)

−1 is continuous
over BR(x0)

Proof
Given any matrix A ∈ Rm×m, det(A) is a polynomial in all entries of A

Since det
(
F (x0)

)
̸= 0, then there exists R > 0 such that det

(
F (x)

)
̸= 0 for all x ∈ BR(x0)

Still given A ∈ Rm×m, (A−1)ij =
P

det(A) where P is a polynomial in entries of A

Thus
(
F (x)−1) is a polynomial in F (x) divided by another nonzero polynomial, hence it is con-

tinuous

Theorem 7.3.1
Let f : Rn → R be such that f ∈ C2(

(
Br(x

∗)
)
, if

(1) ∇2f is Lipschitz continuous over Br(x
∗), i.e.

||∇2f(y)−∇2f(x)||2 ≤ L · ||y − x||2

(2) ∇f(x∗) = 0 and ∇2f(x∗) is p.d. (2nd order sufficient conditions for local optimality)

(3) ∇2f(x)−1|| ≤ 2||∇2f(x∗)−1|| for all x ∈ Br(x
∗) (By lemma, there exists r sufficiently small such

that this is satisfied)

(4) r ≤ 1
2L||∇2f(x∗)−1||

Then Newton’s Method converges quadratically to x∗ if x0 ∈ Br(x
∗)

Proof
Assume for induction that xk ∈ Br(x

∗), we will show that xk+1 ∈ Br(x
∗)

xk+1 − x∗ = xk −∇2f(xk)−1∇f(xk)− x∗

= ∇2f(xk)−1 ·
(
∇2f(xk)(xk − x∗)− (∇f(xk)−

=0︷ ︸︸ ︷
∇f(x∗))

)
= ∇2f(xk)−1 ·

( ∫ 1

0
∇2f(xk)(xk − x∗)dt︸ ︷︷ ︸
does not vary with t

−
∫ 1

0
∇2f(x∗ + t(xk − x∗))(xk − x∗)dt︸ ︷︷ ︸

directional derivative of ∇f
)

in direction (xk − x∗)
integrated from x∗ to xk

= ∇2f(xk)−1︸ ︷︷ ︸
(a)

·
∫ 1

0

(
∇2f(xk)−∇2f(x∗ + t(xk − x∗))

)
(xk − x∗)dt︸ ︷︷ ︸

(b)
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(a) : ||∇2f(xk)−1|| ≤ 2 · ||∇2f(x∗)−1|| by (3)

(b) : ||
∫ 1

0

(
∇2f(xk)−∇2f(x∗ + t(xk − x∗))

)
(xk − x∗)dt||

≤
∫ 1

0
||(∇2f(xk)−∇2f(x∗ + t(xk − x∗))|| · ||xk − x∗||dt

≤
∫ 1

0
L · ||xk − x∗ − t(xk − x∗)|| · ||xk − x∗||dt

≤ L ·
∫ 1

0
||(xk − x∗)(1− t)|| · ||xk − x∗||dt

= L · ||xk − x∗||2
∫ 1

0
(1− t)dt =

L · ||xk − x∗||2

2

Therefore have

||xk+1 − x∗|| ≤ 2 · ||∇2f(x∗)−1|| · L · ||xk − x∗||2

2

By induction, we have ||xk − x∗|| ≤ r and by (4) r ≤ 1
2L||∇2f(x∗)−1|| , hence have

||xk+1 − x∗|| ≤ 1

2r
||xk − x∗||2

So the convergence (if any) is quadratic

And since ||xk − x∗|| ≤ r, we have ||xk+1 − x∗|| ≤ 1
2 ||x

k − x∗||

Therefore we have the convergence

41



Chapter 8

Trust Region Methods

Algorithm

Choose x0 arbitrarily

Let δ0 = 1

For k = 0, 1, · · ·

Let q(x) be a quadratic approximation of f that is accurate around xk

xTEST := argmin{q(x) : ||x− xk| ≤ δk}

ρ := f(xk)−f(xTEST )
q(xk)−q(xTEST )

// The ratio of decrease

If ρ ≥ 1/8

xk+1 = xTEST

Else xk+1 = xk

If ρ ≤ 1/4

δk+1 = δk/2

Else if ρ ≥ 3/4 and ||xTEST − xk|| = δk

δk+1 = 2 · δk

Else δk+1 = δk

Note :

• There are other possible choices, but we consider

q(x) = f(xk) + (x− xk)T∇f(xk) + 1

2
(x− xk)T∇2f(xk)(x− xk)

• ρ is the ratio decrease in f

decrease in q
from xk to xTEST . The decrease in q is guaranteed ≥ 0 since q(xk) is

considered in the agrmin set.

• If xTEST = xk, then the 2nd order sufficient conditions are satisfied. → STOP
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• δk is the Trust Region Radius. We consider q is a ”good” approximation of f in Bδk(x
k). If

ρ is small, the approximation is bad, and we decrease δk

Theorem 8.0.1
Let f ∈ C2(Rn) and assume that ∇2f is Lipschitz continuous in a ball that contains the level set
of x0. Then for the trust region method

(1) Either xk → −∞ or ∇f(xk) → 0 (similar as descent method)

(2) If xk → x∗, then x∗ satisfies 1st and 2nd order necessary condition for local optimality

(3) If xk → x∗ and x∗ satisfies the 1st and 2nd sufficient conditions for local optimality, then for k
large enough, ||xTEST − xk|| ≤ δk, the step is Newton’s Step, so the convergence is quadratic.

8.1 The Trust Region Subproblem (TRS)

argmin{

constant︷ ︸︸ ︷
f(xk) +(x− xk)T∇f(xk) + 1

2
(x− xk)T∇2f(xk)(x− xk) : ||x− xk|| ≤ 1}

For simplicity, let x̃ = x−xk

δk
, we get

agrmin{
(
δk∇f(xk)

)T · x̃+ x̃T
(
(δk)2

1

2
∇2f(xk)

)
x̃ : ||x̃|| ≤ 1}

=argmin{xTAx+ bTx : ||x|| ≤ 1}where A =
(δk)2

2
∇2f(xk), b = δk∇f(xk)
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How do we solve (TRS)?

min xTAx+ bTx

s.t. ||x| ≤ 1

If A is p.d., then we can compute x̂ = −1
2A

−1b

CASE 1 A is p.d. and ||x̂|| = || − 1
2A

−1b|| ≤ 1. Then x̂ is optimal for (TRS)

CASE 2 A is not p.d. or ||x̂|| > 1. Let x̂(λ) = −1
2(A+ λI)−1b

Note :

• (A+ λI) shifts all the eigenvalue, so at some point, all the eigenvalue would be positive thus the
inverse (A+ λI)−1 is well-defined.

• Let λ1 ≤ · · · ≤ λn be the eigenvalues of A, x̂ is defined for all λ > −λ1

• x̂(0) would be optimal in CASE 1

• x̂(λ) would be a global minimizer for xT (A+ λI)x+ bTx

Theorem 8.1.1
||x̂(λ)|| is a decreasing function of λ over (−λ1,−∞). Moreover limλ→∞ ||x̂(λ)|| = 0

Proof
Let A = QDQT where Q is orthogonal and D = diag(λ1, · · · , λn)

Observe that for all z ∈ Rn, ||Qz|| = ||z|| since ||Qz||2 = (Qz)T (Qz) = zTQTQz = zT z = ||z||2 or
intuitively Qz is a rotation of z as Q is orthogonal. Thus
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x̂(λ) = −1

2
(QDQT + λI)−1b

= −1

2
(QDQT + λQIQT )−1b

= −1

2
[Q(D + λI)QT ]−1b

= −1

2
QT−1

(D + λI)−1Q−1b

= −1

2
Q(D + λI)−1QT b

||x̂(λ)|| = 1

2
||Q(D + λI)−1QT b||

=
1

2
||(D + λI)−1QT b︸︷︷︸

c

|| by ||Qz|| = ||z||

=
1

2
||(D + λI)−1c||

=
1

2
||(


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

+ λI)−1 · c||

=
1

2
||


1

λ1+λ 0 · · · 0
0 1

λ2+λ · · · 0
...

...
. . .

...
0 0 · · · 1

λn+λ

 · c||

=
1

2
||


c1

λ1+λ
c2

λ2+λ
...
cn

λn+λ

 ||

=
1

2

√√√√√∑
i

(
1

λi + λ
)2︸ ︷︷ ︸

decreasing for λ>−λi

· c2i︸︷︷︸
constant ≥0

lim
λ→∞

||x̂(λ)|| = 0

CASE 2a : c1 ̸= 0, λ1 ̸= 0 Note : c1 = (QT b)1 = vT1 b = vT1 ∇f(xk)δk, where v1 is the eigenvector
of ∇2f(xk) corresponding to λ1 (||v1|| = 1), so c1 ̸= 0 means ∇f(xk) is not orthogonal to v1

In this case, limλ→λ1 ||x̂(λ)|| = +∞

Then ∃λ∗ such that ||x̂(λ∗)|| = 1

Lemma 8.1.1
If x̂ is a global minimizer for (TRS) in CASE 2a, then ||x̂|| = 1
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Proof
If ||x̂|| < 1, then ∃Bδ(x̂) ⊆ B1(0)

Since x̂ is a global minimizer, it is also a local minimizer for xTAx+ bTx

If λ1 < 0, A is not p.s.d. and xTAx+bTx has no local minimizers. λ1 = 0 excluded by hypothesis
of CASE 2a

If λ1 > 0, A is p.d. and xTAx + bTx has a unique local (and global) minimizer, but by CASE
2a hypothesis, ||x̂|| > 1

Theorem 8.1.2
x̂(λ∗) is a global minimizer for (TRS) in CASE 2a

Proof
Recall that x̂(λ∗) is a global minimizer for xT (A+ λ∗I)x+ bTx

If we restrict to ||x|| = 1, and we have ||x̂(λ∗)|| = 1

x̂(λ∗) = argmin{xT (A+ λ∗I)x+ bTx : ||x|| = 1}
= argmin{xTAx+ λ∗ xTx︸︷︷︸

||x||2=1

+bTx : ||x|| = 1}

= argmin{xTAx+ bTx+ λ∗︸︷︷︸
constant

: ||x|| = 1}

= argmin{xTAx+ bTx : ||x|| = 1}

By Lemma 8.1.1, x̂(λ∗) = argmin{xTAx+ bTx : ||x|| ≤ 1}

CASE 2b : either c1 = 0 or λ1 = 0
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Theorem 8.1.3
A global minimizer for (TRS) in CASE 2b is given by

x̂ =
∑

i:λi ̸=λ1

vTi b

λi − λ1
+ τv1

where vi is the eigenvector of A corresponding to λ1, ||vi|| = 1 and τ is chosen such that ||x̂|| = 1

Proof
Nocedal-Weight page 84 ”the hard case”
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Chapter 9

Optimality Conditions For ConstrainedOp-
timization

9.1 KKT Points

Definition 9.1.1 (Local Minimizer for Constrained OPT & Feasible Improving Direction)
Consider

min f(x)

s.t. x ∈ G ⊆ Rn

the point x̂ is a local minimizer if x̂ ∈ G and there exists ϵ > 0 such that for all x ∈ Bϵ(x̂) ∩G, we
must have f(x) ≥ f(x̂)

Note :

• The above definition does not require
(
Bϵ(x̂) ∩ G

)
\{x̂} ̸= ∅, i.e. x̂ could be the only point, in

which case it is the local minimizer

• Equivalently, ̸ ∃ d ∈ Bϵ(0) : x̂+ d ∈ G and f(x̂+ d) < f(x̂). Such a d would be called a feasible
improving direction (or step)

Informally, consider

min f(x)

s.t. h(x) = 0

Let x̄ ∈ Rn such that h(x̄) = 0. Is there any improving direction d at x̄?

If d is small, h(x̄+ d) ≈ h(x̄) + dT∇h(x̄) = dT∇h(x̄)

• d ”feasible” : we want dT∇h(x̄) = 0

• d ”improving” : we want dT∇f(x̄) < 0

Take an arbitrary such vector d ⊥ ∇h(x̄).
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If dT∇f(x̄) < 0, then we are done

If dT∇f(x̄) > 0, we can take (−d) : have (−d)T∇h(x̄) = 0 and (−d)T∇f(x̄) < 0

If dT∇f(x̄) = 0, we need another direction d

When are there no feasible improving directions?

When, for all d ∈ Rn such that dT∇h(x̄) = 0, we have dT∇f(x̄) = 0

When all directions orthogonal to ∇h(x̄) are also orthogonal to ∇f(x̄)

I.e. when ∇h(x̄) is parallel to ∇f(x̄)

Such x̄ is called Karush-Kuhn-Tucker (KKT) Point

Example 9.1.1

min x1 + x2

s.t. x21 + x22 − 2 = 0

where h is a convex function, and the feasible region is the circle of radius
√
2 (just the boundary

not include the inside part), which is not convex as there is hole in it.

How can we change h such that the feasible region h(x) = 0 is also convex? We must need h is a
linear function

Note that we want h(x) = 0 instead of h(x) ≤ 0, so the thm about convex function and convex set
does not work here.

∇f(x) =
[
1
1

]
, ∇h(x) =

[
2x1
2x2

]
, KKT points :

[
1
1

]
and

[
−1
−1

]
such that x1 = x2

Informally, consider

min f(x)

s.t. g(x) ≤ 0

Let x̄ be such that g(x̄) ≤ 0

CASE 1 : g(x̄) < 0

For all ||d|| sufficiently small (thus in the feasible region), g(x̄+ d) < 0

We want dT∇f(x̄) < 0, which exists iff ∇f(x̄) ̸= 0

CASE 2 : g(x̄) = 0

d ”feasible” : g(x̄+ d) ≈ g(x̄) + dT∇g(x̄) = dT∇g(x̄), so want dT∇g(x̄) ≤ 0

d ”improving” : dT∇g(x̄) < 0

When are there no feasible improving directions?
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CASE g(x̄) < 0 : we want ∇f(x̄) = 0

CASE g(x̄) = 0 : for all d such that dT∇g(x̄) ≤ 0, we have dT∇f(x̄) ≥ 0

Lemma 9.1.1
Let a, b ∈ Rn, TFAE:

(1) for all d ∈ Rn, dTa ≤ 0 =⇒ dT b ≥ 0 (think of vector multiplication with angle)

(2) b = −λa for some λ ≥ 0

CASE g(x̄) < 0 : we want ∇f(x̄) = 0

CASE g(x̄) = 0 : we want ∇f(x̄) = −λ∇g(x̄) for some λ ≥ 0

KKT points :


∇f(x̄) = −λ∇g(x̄)
λ ≥ 0

λ∇g(x̄) = 0

Given min{f(x) : g(x) ≤ 0}, KKT at y are :

CASE g(y) < 0 : ∇f(y) = 0

CASE g(y) = 0 : ∇f(y) = −λ∇g(y) for some positive λ

Example 9.1.2

min x1 + x2

s.t. x21 + x22 − 2 ≤ 0

CASE 1 x21 + x22 − 2 < 0, ∇f(y) = [1, 1]T = 0 never holds

CASE 2 x21 + x22 − 2 = 0

∇f(y) = [1, 1]T = −λg(y)
= −λ[2y1, 2y2]T = −λ/2 · y

Hence y = [−1,−1] is the only KKT point

9.2 Nonlinear Problem (NLP)

Definition 9.2.1 (NLP)

min f(x)

s.t. gi(x) ≤ 0∀i ∈ {1, · · · ,m}
hi(x) = 0∀i ∈ {1, ·, p}
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Definition 9.2.2 (Linearized Feasible Direction & the Cone L(NLP ))
Let y be feasible for (NLP), a linearized feasible direction is a vector d ∈ Rn such that

(1) ∀i ∈ {1, · · · ,m} if gi(x) = 0, then dT∇gi(y) = 0

(2) ∀i ∈ {1, · · · , p} have dT∇hi(y) = 0

The Cone of Linearized feasible directions at y is the set of all such directions, denoted as
L(NLP )(y)

Definition 9.2.3 (KKT Points)
Let y ∈ Rn, y is a KKT point if it satisfies the KKT conditions :

(1) y is feasible for (NLP)

(2) ∀d ∈ L(NLP )(y), d
T∇f(y) ≥ 0

Theorem 9.2.1 (Farkas’ Lemma)
Given A ∈ Rm×n, b ∈ Rm, {Ax = b : x ≥ 0} is feasible iff {AT y ≥ 0 : bT y < 0} is infeasible

Proof
(⇒) Let x̄ be such that Ax̄ = b, x̄ ≥ 0, i.e. a feasible solution

Then ∀y ∈ Rm, if AT y ≥ 0, have xTAT y ≥ xT 0 ≥ 0

Also xTAT y ≥ 0 gives (Ax)T y ≥ 0, i.e. bT y ≥ 0

Thus {AT y ≥ 0 : bT y < 0} is infeasible

(⇐) Consider the Primal-Dual pair

(P) = min{0Tx : Ax = b, x ≥ 0}

(D) = max{bT y : AT y ≤ 0}

Note that (P) cannot be unbounded as 0Tx is always 0

Note that (D) cannot be infeasible as y = 0 is a feasible solution

Using contrapositive, have

{Ax = b : x ≥ 0} being infeasible

⇒(P ) is infeasible

⇒(D) is unbounded

⇒∃ d ∈ Rm : ATd ≤ 0 and bTd > 0

Let y = −d, so AT y ≥ 0 and bT y < 0

⇒{AT y ≥ 0 : bT y < 0} is feasible

Theorem 9.2.2
Let A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm, then {Ax + Bw = b : x ≥ 0} is feasible iff {AT y ≥ 0 : BT y =
0, bT y < 0} is infeasible
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Proof

{Ax+Bw = b : x ≥ 0} is feasible

⇒{Ax+Bw+ −Bw− = b : x,w+, w− ≥ 0} is feasible

⇒{
[
A B −B

]
·

 x
w+

w−

 = b :

 x
w+

w−

 ≥ 0} is feasible

⇒{
[
A B −B

]T
y ≥ 0 : bT y ≥ 0} is infeasible

⇒{AT y ≥ 0 : BT y ≥ 0,−BT y ≥ 0, bT y ≥ 0} is infeasible

⇒{Aty ≥ 0, bT y = 0, bT y ≥ 0} is infeasible

Variant of Fakas’ Lemma :

{
Ax+Bw = b

x ≥ 0
feasible ⇐⇒


AT y ≥ 0

BT y = 0

bT y < 0

is infeasible

KKT conditions at x̄ feasible for (NLP)

For all d such that

{
dT∇gi(x̄) ≤ 0 for all i = 1, · · · ,m with gi(x̄) = 0

dT∇hi(x̄) = 0 for all i = 1, · · · , p
and we have these two

conditions ⇒ dT∇f(x̄) ≥ 0

Using A ∧B ⇒ C is equivalent to ¬(A ∧B ∧ ¬C), i.e. the system
−∇gi(x̄)Td ≥ 0 for all i : gi(x̄) = 0

∇hi(x̄)Td = 0 for all i

∇f(x̄)Td < 0

is infeasible

By Farkas’s Lemma, it is equivalent to ∃λ ∈ Rm, λ ≥ 0, µ ∈ Rl such that

−
∑

i:gi(x̄)=0

λi∇gi(x̄) +
∑
i

µi∇hi(x̄) = ∇f(x̄)

Theorem 9.2.3 (KKT Gradient Equation or Complementary Equation)
Given (NLP), a feasible point x̄ is a KKT point iff

∃λ ∈ Rm, λ ≥ 0, µ ∈ Rl such that

{
−
∑

i:gi(x̄)=0 λi∇gi(x̄) +
∑

i µi∇hi(x̄) = ∇f(x̄)
λi · gi(x̄) = 0

Example 9.2.1
consider the system


min cTx

s.t. Ax = b

x ≥ 0

or equivalently


min cTx

s.t. −Ix ≤ 0

Ax− b = 0

We have gi(x) = −xi , hi(x) = AiT − bi , ∇g(x) = −ei , ∇hi(x) = AiT

52



9.2 Nonlinear Problem (NLP) Scribe : Saiyue Lyu

KKT conditions : ∃λ ≥ 0 , µ such that

{∑
i λiei +

∑
i µiA

iT = c

λi · (−x̄i) = 0
⇐⇒


λI +ATµ = c (1)

x̄Tλ = 0 (2)

λ ≥ 0 (3)

(1) gives λ = c−ATµ ≥ 0, i.e. the system is equivalent to{
ATµ ≤ c ⇐ (dual feasibility)

(c−ATµ)T x̄ = 0 ⇐ (complementary slackness)

Let Ω = {x ∈ Rn : gi(x) ≤ 0∀i , hi(x) = 0∀i} (feasible region of (NLP))

Definition 9.2.4 (Feasible Arc)
A feasible arc at x in the direction of d is a function ϕ : [0, c] → Rn for some c > 0 s.t.

(1) ϕ(0) = x

(2) ϕ ∈ C1([0, c])

(3) ϕ′(0) = d

(4) ϕ(t) ∈ Ω, for all t ∈ [0, c]

Definition 9.2.5 (Tangent Cone)
Given a point x ∈ Rn, the tangent cone to Ω at x is TΩ(x) = {d ∈ Rn : ∃ feasible arc at x with
direction d}

Example 9.2.2
Ω = {x ∈ R2 : ||x|| ≤ 1} and x = [−1, 0]T , then TΩ(x) = {[d1, d2]T : d1 ≥ 0}

Lemma 9.2.1
Let ϕ : R → Rn and f : Rn → R with ϕi ∈ C1(R) for all i and f ∈ C1(Rn), then

(
d
dtf(ϕ(t))

)
(t0) =

∇f(ϕ(t0))T ( d
dtϕ)(t0)

Proof
By the Chain Rule, given functions a, b :

a(b(x))′(x0) = a′(b(x0))b
′(x0)

Also by the Chain Rule, given a(y1, y2)

a
(
b(x), c(x)

)′
(x0) =

∂

∂y1
a
(
b(x0), c(x0)

)
b′(x0) +

∂

∂y2
a
(
b(x0), c(x0)

)
b′(x0)

Therefore( d
dt
f(ϕ(y))

)
(t0) =

( d

dx1
f(ϕ(t0))

)
(
d

dt
ϕ)(t0) + · · ·+

( d

dxn
f(ϕ(t0))

)
(
d

dt
ϕ)(t0) = ∇f(t0)Tϕ′(t0)

Theorem 9.2.4
Let x be feasible for (NLP) and assume L(NLP ) = TΩ, then if x is a local minimizer of (NLP), then
it is a KKT point.
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Proof
By definition of a KKT point, we want a feasible x and all d ∈ L(NLP )(x) such that dT∇f(x) ≥ 0

Let d ∈ L(NLP )(x), then d ∈ TΩ(x), so ∃ϕ feasible arc at x with direction d

Let γ(t) = f(ϕ(t)) for t ≥ 0

γ′(0) = lim
t→0,t>0

γ(t)− γ(0)

t

by definition of γ, have γ(0) = f(ϕ(0)) = f(x)

Since x is a local minimizer, γ(t)− γ(0) = f(ϕ(t))− f(x) ≥ 0, thus γ′(0) ≥ 0

By the above lemma, γ′(0) = ∇f(ϕ(0))Tϕ′(0) = ∇f(x)Td

Therefore ∇f(x)Td ≥ 0

Example 9.2.3 (when minimizer is not a KKT point)

min x1 + x2

s.t. − x2 ≤ 0

− x31 + x2 ≤ 0

Minimizer is x∗ = [0, 0]T

Let f(x) = x1 + x2,∇f(x) = [1, 1]T ,∇f(x∗) = [1, 1]T

And g1(x) = −x2,∇g1(x) = [0,−1]T ,∇g1(x∗) = [0,−1]T

Also g2(x) = −x31 + x2,∇g2(x) = [−3x21, 1]
T ,∇g2(x∗) = [0, 1]T

KKT gradient equation system gives

∇f(x∗) = −λ1g1(x∗)− λ2g2(x
∗)

λ1g1(x
∗) = 0

λ2g2(x
∗) = 0

Which is −λ1[0,−1]− λ2[0, 1] = [1, 1], which is infeasible, so x∗ cannot be a KKT point

Remark
In the example,

TΩ(x
∗) = {x ∈ R2 : x1 ≥ 0, x2 = 0}

L(NLP )(x
∗) = {x ∈ R2 : x2 = 0}

These two cones are distinct

The tangent cone only care about the feasible region

The cone of linearized feasible directions cares about the gradients of the specific problem
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Example 9.2.4

min x1 + x2

s.t. − x2 ≤ 0

− x31 + x2 ≤ 0

− x1 ≤ 0

g3(x) = −x1,∇g3(x) = [−1, 0]T ,∇g(x∗) = [−1, 0]T

The gradient equation gives ∇f(x∗) = −λ1[0,−1]− λ2[0, 1]− λ3[1, 0] = [1, 1], which is feasible

Therefore x∗ is a KKT point

Theorem 9.2.5
∀x ∈ Ω, TΩ ⊆ L(NLP )(x)

9.3 Constrained Optimization

Given NLP

min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , p

TΩ(x) = {d ∈ Rn : ∃ feasible arc ϕ : ϕ′(0) = d}

LNLP (x) = {d ∈ Rn : ∇gi(x)Td ≤ 0, ∀i : gi(x) = 0,∇hj(x)Td = 0,∀j}

KKT Point : x ∈ Ω is a KKT point if ∇f(x)Td ≥ 0,∀d ∈ LNLP (x), iff ∃λi, µi where all these holds:

−
∑

λi∇gi(x) +
∑

µihi(x) = ∇f(x)

λi ≥ 0

λigi(x) = 0,∀i

Theorem 9.3.1
Let x ∈ Ω such that TΩ(x) = LNLP (x), if x is a local minimizer, then x is a KKT point

Definition 9.3.1 (Constraint Qualification)
A constrained qualification (CQ) is a condition on the feasible set of NLP s.t. TΩ(x) = LNLP (x)

Theorem 9.3.2
Let x ∈ Ω, then TΩ(x) ⊆ LNLP (x)
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Proof
Let x ∈ Ω and d ∈ TΩ(x)

There exists c > 0 and ϕ : [0, c] such that

ϕ(0) = x
ϕ is C0 smooth and ϕ′(0) = d

ϕ(t) ∈ Ω,∀t ∈ [0, c]

We want d ∈ LNLP (x) such that

∇gi(x)Td = 0,∀i such thatgi(x) = 0

∇hj(x)Td = 0,∀j

Suppose ∃ i : gi(x) = 0, consider Taylor expansion gi ◦ ϕ at 0 in the direction t ∈ [0, c]

Define a function o(t) where limt→0
o(t)
t = 0

Note that gi
(
ϕ(t)

)
≤ 0 and that gi

(
ϕ(0)

)
= gi(x) = 0, hence have

gi
(
ϕ(t)

)
= gi

(
ϕ(0)

)
+ g′i

(
ϕ(0)

)
t+ o(t)

0 ≥ g′i
(
ϕ(0)

)
t+ o(t)

= ∇gi
(
ϕ(0)

)T
ϕ′(0)t+ o(t)

= ∇gi
(
ϕ(0)

)T
dt+ o(t)

(Divide both sides by t) 0 ≥ ∇gi
(
ϕ(0)

)T
d+

o(t)

t

(Taking the limit of both sides) 0 ≥ ∇gi
(
ϕ(0)

)T
d+ lim

t→0

o(t)

t

= ∇gi
(
ϕ(0)

)T
d

Exercise : do for hj(x)

Definition 9.3.2 (Linear Independence CQ (LICQ))
The LICQ holds at x ∈ Ω if the set {∇gi(x) : gi(x) = 0} ∪ {∇hj(x) : ∀j} is linear independent

Theorem 9.3.3
Let x ∈ Ω, if x satisfies LICQ, then TΩ(x) = LNLP (x)

Proof
read up on it

Remark
h(x) = 0 ⇐⇒ h(x) ≤ 0,−h(x) ≤ 0

Example 9.3.1
min{x1 + x2 : −x2 ≤ 0,−x31 + x2 ≤ 0} with x∗ = [0, 0]

Does the LICQ hold at x∗?
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∇g1(x) = [0,−1], ∇g2(x) = [−3x21, 1] at x
∗ : {[0,−1], [0, 1]}, not linearly independent

Definition 9.3.3 (Linear Programming CQ (LPCQ))
The LPCQ holds at x ∈ Ω if all the tight constraints are affine (of form ax− b)

Theorem 9.3.4
Let x ∈ Ω, if the LPCQ holds at x, then TΩ(x) = LNLP (x)

Proof
Let x ∈ Ω be such that LPCQ holds

Then by definition of LPCQ, have

gi(x) < 0, i = 1, · · · , k for some k

gi(x) = 0, i = k + 1, · · · ,m =⇒ gi(x) = aTi x− bi

hj(x) = 0,∀j =⇒ hj(x) = aTj x− bj

Let d ∈ LNLP (x), we want to prove d ∈ TΩ by definition of LNLP (x), we have

0 ≥ ∇gi(x)Td = aTi d, i = k + 1, · · · ,m
0 = ∇hj(x)Td = aTj d,∀j

Consider ϕ(t) = x+ td, we have ϕ(0) = x smooth with ϕ′(t) = d, ϕ(t) ∈ Ω, have

∀j, hj(x+ td) = aTj (x+ td)− bj = aTj x− bj + aTj td = aTj x− bj = 0

∀i = k + 1, · · · ,m, gi(x+ td) = aTj (x+ td)− bi = aTi x− bi + aTi td = gi(x) + t∇gi(x)Td ≥ 0

∀i = 1, · · · , k, gi(x+ td) ≤ 0, ∀t ∈ [0, ϵi), ϵi > 0, by continuity of gi

Then ϕ is a feasible arc ∀t ≤ min{ϵi}, so d ∈ TΩ(x)

Theorem 9.3.5
Let x ∈ Ω such that a CQ holds at x, if x is a local minimizer, then x is also a KKT point

Review

LICQ The set {∇gi(x) : gi(x) = 0} ∪ {∇hj(x), ∀i} is linearly independent

LPCQ The tight constraints at x are all affine.

x is a KKT point if ∃λi, µj such that

(1) ∇f(x) = −
∑
λi∇gi(x) +

∑
µj∇hj(x)

(2) λi ≥ 0

(3) λigi(x) = 0
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9.4 Constraint Qualifications

Example 9.4.1

min xTAx , x ∈ Rn, A ∈ Rn×n symmetric

s.t. ||x|| = 1

note this is a continuous function on a compact constrained set, but the norm function is not
continuously differentiable, how do we fix this? we can fix the constrained to be ||x||2 = 1, which
is a equivalent one. Now check the constrained qualification before do KKT point

We have LICQ as the set {2x} is linearly independent when x ̸= 0, then every minimizer will
satisfies the KKT, i.e. KKT satisfies at x̄ if ∃µ such that

(1)2Ax̄ = µ(2x̄) ⇐⇒ Ax̄ = µx̄ , at x̄ the objective value is x̄TAx̄ = x̄T (µx̄) = µ

9.5 Convex NLP

min f(x)

s.t. gi(x) ≤ 0,∀i
hj(x) = 0,∀j
f , gi are convex

hj is affine

Definition 9.5.1 (Slater CQ or Strict Feasibility)
The Slater CQ holds for (Convex Program) if ∃ x̄ ∈ Ω s.t. gi(x̄) < 0, ∀i

Theorem 9.5.1
If the slater CQ holds for (CP), then TΩ(x) = LNLP (x) for all x ∈ Ω

Theorem 9.5.2
Let x be a KKT point for (CP), then x is a global minimizer of (CP).

Proof
Let y ∈ Ω, y ̸= x, we want to show that f(x) ≤ f(y)

Since x is a KKT point, it follows that ∇f(x)Td ≥ 0 ∀d ∈ LNLP (x)

Now we show that d := (y − x) ∈ LNLP (x)

Recall that if c ∈ C1 and convex function, then

c(x̂) ≥ c(x̄+∇c(x̄)T (x̂− x̄)∀x̂, x̄ (9.1)

Suppose there is a tight constraint i be such that gi(x) = 0, then by (9.1), have

gi(y)︸ ︷︷ ︸
≤0

≥ gi(x)︸ ︷︷ ︸
=0

+∇gi(x)T (y − x)

0 ≥ ∇gi(x)T (y − x)
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Suppose there is a affine constraint j ∈ {1, · · · , p}, we need ∇hj(x)T (y − x) = 0

Since hj is affine, hj(x) = aTj x+ bj , hence

h(x) = 0 ⇐⇒ aTj x+ bj = 0 (9.2)

h(y) = 0 ⇐⇒ aTj y + bj = 0 (9.3)

Subtract (9.2) and (9.3), we have aTj (y − x) = 0, i.e. ∇hj(x)T (y − x) = 0

We have shown that d := (y − x) ∈ LNLP (x)

By the KKT conditions ∇f(x)Td ≥ 0, ∀d ∈ LNLP (x), which gives ∇f(x)T (y − x) ≥ 0

Since f is convex by (9.1), we have

f(y) ≥ f(x) +∇f(x)T (y − x) ≥ f(x)

What if gi(x) < 0? Things can be really good or really bad

Consider gi(x) < 0 is an open set (for example interval), if f is linear, then we can never obtain
an optimal soln, thus there is no KKT point

if f is quadratic and obtain the minimal value at z in the interior of the open set, then ∇f(z) = 0,
we have 0 = ∇f(x) = −

∑
λi∇gi(x) +

∑
µj∇hj(x), we can just choose λi = µj = 0

Corollary 9.5.1
Suppose the slater CQ holds for (CP), then x is a global minimizer iff x is a KKT point

Remark
All the results for convex optimization also hold when the function are not C1

Example 9.5.1

min ||x− x0||22 this is called projection

s.t. li ≤ xi ≤ ui, ∀i li < ui this is called Box constraint

note the objective function is a strict convex quadratic function as the hessian ∇2f(x) = 2I is
positive definite. And the constraints xi − ui ≤ 0 and −xi + li ≤ 0 are affine thus convex. So this
is a (CP). We can choose xi = (li + ui)/2 as a slater point.

The KKT conditions are

2(x− x0) = −
∑

λ+i ei +
∑

λ−i (−ei)

x =
1

2

(
x0 −

∑
(λ+i + λ−i )ei

)
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Example 9.5.2 (Projection onto a box)
Given l, u, z ∈ Rn with l < u, solve min ||x− z||2 subject to l ≤ x ≤ u. (how to construct the point
and prove it is the optimal)

f(x) = (x− z)T (x− z) = xT Iz − 2zTx+ zT z
gli(x) = li − xi , g

u
i (x) = xi − ui

∇f(x) = 2x− 2z
∇gli(x) = −ei , ∇gui (x) = ei

LICQ : For all i, at most one of gli(x), g
u
i (x) is zero

Thus the gradient of the active constraints at any feasible x give a subset of the columns of an
identity matrix ⇒ linearly independent

LPCQ : All gi(x) are linear (affine)

Slater : Slater point : l+u
2

Hence KKT is necessary

f is convex and feasible region Ω is convex, thus KKT is sufficient

Feasibility : l ≤ x ≤ u

KKT eqn : −
∑

i λ
l
i(−ei)−

∑
i λ

u
i ei = 2(x− z) ⇐⇒ λl − λu = 2(x− z), λli, λ

u
i ≥ 0

Complementarity : (xi − li)λ
l
i = 0 , (ui − xi)λ

u
i = 0

For i = 1, · · · , n

CASE 1 : zi < li

For any x ∈ Ω, zi < xi, for λ
l
i − λui = 2(xi − zi) > 0, we need λli > 0

Since (xi − li)λ
l
i = 0, we have xi = li

CASE 2 : zi > ui

For any x ∈ Ω, zi > xi, so λ
u
i > 0, thus xi = ui

CASE 3 : li ≤ zi ≤ ui

If zi < xi, by CASE 1 , we have λli = 0 ⇐ xi = li ≤ zi < xi, Contradiction!

Similarly if zi > xi, λ
u
i > 0 ⇐ xi = ui ≥ zi > xi, Contradiction!

Therefore xi = zi

Algorithm : For all i, xi = median(li, ui, zi)
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Chapter 10

Algorithms For ConstrainedOptimization

10.1 Equality-Constrained Optimization

min {f(x) : hi(x) = 0, ∀i = 1, · · · , n}

Quadratic Penalty Method

Choose x0, ρ > 0

For k = 0, 1, 2, · · ·

xk+1 = argmin{gρ(x)}, where gρ(x) = f(x) + ρ

n∑
i=1

(
hi(x)

)2
(initialize unconstrained method at xk)

ρ = C · ρ, where C > 1

Note that for a large ρ, to minimize the objective function gρ, it forces hi(x) to be really small

But when ρ is too big, such as 1
ϵ , we will have a problem, this is why we just say ρ is a large number

but not directly given a really large number

Example 10.1.1

min (x1 − 1)2 + (x2 − 1)2

s.t. x1 + x2 = 4

The level set is a flat ellipsoid around x1 = x2 = 2 on the line x1 + x2 = 4, with a really large
ρ, the algorithm will give any point in this ellipsoid, finally converging to the minimizer point, i.e.
the soln will become unstable as ρ getting large.

Theorem 10.1.1
Let f, h1, · · · , hn ∈ C1(Rn) and let g(x) = ||

h1(x). . .

hn(x)

 ||2 =
∑

i

(
hi(x)

)2
Suppose xk → x∗ and ∇h1(x∗), · · · , hn(x∗) are linearly independent, then
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Either (1) ∇g(x∗) = 0 and g(x∗) > 0 Or (2) x∗ is a KKT point

Quadratic Penalty Method :

gρ(x) = f(x) + ρ
∑n

i=1

(
hi(x)

)2
Drawbacks :

For a large ρ, the unconstrained problem is bad numerically.

By design, ρ has to be large as when hi(x
k) = 0 , ∇

(
hi(x)

)2
becomes small.

Exact Penalty Method :

gρ(x) = f(x) + ρ
∑n

i=1 |hi(x)|

Advantages : When hi(x
k) ≈ 0 , ∇|hi(xk)| is constant

Drawbacks : |hi(x)| is not differentiable

Augmented Lagrangian Penalty Method :

Lagrangian Relaxation :

L(x, µ) = f(x)−
∑n

i=1 µi · hi(x)

Theorem 10.1.2
KKT points x̄ of (NLP) with multipliers µ̄ coincide with stationary points (x̄, µ̄) of L

Proof
KKT conditions for (NLP) :

Feasibility : hi(x) = 0, ∀i = 1, · · · , n

Gradient Equation : ∃ µ̄ :
∑

i µ̄i∇hi(x̄) = ∇f(x̄)

Stationary Point of L : ∇L(x̄, µ̄) = 0, since

∇L(x̄, µ̄) =
[
∇x̄L(x̄, µ̄)
∇µ̄L(x̄, µ̄)

]
=


∇f(x̄)−

∑
i µ̄i∇hi(x̄)

h1(x̄)
...

hn(x̄)

 = 0

Remark
x̄ is a KKT point for (NLP) iff ∃ µ̄ : ∇L(x̄, µ̄) = 0

Important : The above does not imply that (x̄, µ̄) is a local minimizer for L, however, for any
KKT point x̄, ∃ µ̄ such that x̄ is a local minimizer for min {L(x̄, µ) : µ = µ̄}
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Finding µ̄ By Augmented Lagrangian Method

Choose x0, µ0, ρ > 0

For k = 0, 1, 2, · · ·
xk+1 = argmin{LA(x, µ

k)} # argmin of x

where LA(x, µ) = f(x)−
n∑

i=1

µi · hi(x) + ρ
n∑

i=1

(
hi(x)

)2
(initialize unconstrained method at xk)

µk+1
i = µki − 2ρ · hi(xk+1) (10.1)

ρ = C · ρ, where C > 1

Why (10.1)? At xk+1 :

0 = ∇xLA(x
k+1, µk) = ∇f(xk+1)−

n∑
i=1

µki · ∇hi(xk+1) + 2ρ
n∑

i=1

hi(x
k+1) · ∇hi(xk+1)

∇f(xk+1) =
n∑

i=1

µki · ∇hi(xk+1) + 2ρ
n∑

i=1

hi(x
k+1) · ∇hi(xk+1)

=
n∑

i=1

(
µki − 2ρ · hi(xk+1)

)
· ∇hi(xk+1)

Setting µk+1
i to

(
µki − 2ρ · hi(xk+1)

)
lets us satisfy the gradient equation at xk+1

Keep in mind we still miss feasibility of xk+1, so xk+1 is not necessarily KKT

Advantages of Augmented Lagrangian Method :

LA(x, µ) is differentiable, in practice, will usually converge before ρ grows too large

10.2 Inequality Constrained Optimization

Focus on the closed convex cone

Definition 10.2.1 (Closed Convex Cone)
K is a closed convex cone if it is closed, convex, nonempty and x ∈ K,λ ≥ 0 ⇒ (λx) ∈ K

The three most important cone are :

Rn
+ = {x ∈ Rn, x ≥ 0}

Cn+1
2 = {(y, x) ∈ R× Rn : y ≥ ||x||2}
Sn
+ = {X ∈ Rn×n : X is p.s.d}

Conic Programming

min cTx

s.t. Ax = b
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Definition 10.2.2 (Interior and Boundary)
int(K) = {x ∈ K : ∃ δ > 0 such that x ∈ K, Bδ(x) ⊆ K, K is a closed convex cone}

boundary(K) = K\int(K)

Definition 10.2.3 (Barrier Function)
A barrier function is a convex function ϕ : int(K) → R such that limx→b ϕ(x) = +∞ for any
b ∈ boundary(K)

The standard boundary functions are

• Rn
+ : ϕ(x) = −

∑
i log xi

• Cn+1
2 : ϕ(x) = − log(y2 − ||x||22)

• Sn
+ : ϕ(x) = − log(detX)

For Rn
+, we want the penalty function of 0 makes all values equal to 0 and equal to +∞ at 0, for

Cn+1
2 , y2 − ||x||22 stands for x in the graph, and for S2

+, all the eigenvalues are ≥ 0, so detX ≥ 0,
consider when one of the eigenvalues goes to 0, detX stands for x.

Primal Interior Point Method

Choose x0 ∈ int(K) : Ax0 = b, ρ0 > 0

For k = 0, 1, · · ·
xk+1 ≃ argmin{gρ(x) : Ax = b} (10.2)

where gρ(x) = cTx+ ρkϕ(x)

initialize at xk

ρk+1 = C · ρk with C < 1

The LP Case (K = Rn
+)

We take a quadratic approximation of gρ(x) for (10.2) at x
k :

gρ(x) = cTx+ ρkϕ(x)

≃ cTxρkϕ(xk) + ρ(x− xk)T∇ϕ(xk) + ρk

2
(x− xk)T∇2ϕ(xk)(x− xk)
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Let h = x− xk, then (10.2) becomes :

min

constant︷ ︸︸ ︷
cTxk +cTh+

constant︷ ︸︸ ︷
ρkϕ(xk)+ρkhT∇h(xk) + ρk

2
hT∇2ϕ(xk)h

s.t. A(xk + h) = b

ϕ(x) = −
∑
i

log xi

∇ϕ(x) =

−1/x1
...

−1/xn


∇2ϕ(x) = diag(

1

x21
, · · · , 1

x2n
)

Which is

min
(
c− ρk

1/x
k
1

...
1/xkn

)T
h+

ρk

2
hT · diag(1/(xk1)2, · · · , 1/(xkn)2)h

s.t. Ah = b−Axk = 0 since xk satisfies Axk = b

KKT conditions are :

{
gradient eq :

∑
i µi∇γ(h) = ∇f(h)

feasibility : µiγi(h) = 0

⇒


ATµ =

(
c− ρk


1/xk1
...

1/xkn

)
+ ρk diag( 1

(xk
1)

2 , · · · , 1
(xk

n)
2 )h

Ah = 0

⇒ −

[
−ρk diag( 1

(xk
1)

2 , · · · , 1
(xk

n)
2 ) AT

A 0

]
·
[
h
µ

]
= −


(
c− ρk

1/x
k
1

...
1/xkn

)
0


Note that the matrix is symmetric and easy to solve it numerically

Theorem 10.2.1
For Rn

+,Cn+1
2 ,Sn+, the primal interior point method satisfies ||xk − x∗|| ≤ ϵ after k = p(E, ϵ)

iterations, where

• p is a polynomial

•E is the encoding size of the problem

⇒ Polynomial Time Algorithm
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Given p closed convex cones K1, · · · ,Kp, we have that K1 × · · · ×Kp = K is also a convex cone.
In practice, we can solve

min cTx

s.t. Ax = b

x ∈ K

Example 10.2.1 (Euclidean Facility Location Problem)
Given b1, · · · , bk ∈ Rn, find x ∈ Rn that minimizes

∑
||bi − x||2 (note each bi is a distinct vector,

not ith element)

This problem is non-differentiable and f(x) =
∑

||bi − x||2 are not Lipschitz-continuous, reformu-
lating :

min
∑

ti

s.t. ti ≥ ||bi − x||2 , i = 1, · · · , k , (ti, bi − x) ∈ Cn+1
2

Reformulating again :

min
∑

ti

s.t. ti ≥ ||yi||2 , i = 1, · · · , k , (ti, yi) ∈ Cn+1
2

yi = bi − x , i = 1, · · · , k

Once again

min
∑

ti

s.t. µ ≥ ||x||2
ti ≥ ||yi||2
yi = bi − x

Finally

min 1T t

s.t. (µ, x, t1, y1, · · · , tk, yk) ∈ Cn+1
2 × · · · × Cn+1

2

yi = bi − x

10.3 Review For Duality

Definition 10.3.1 (Dual Cone)
The dual cone of a closed convex cone K ⊆ Rn is K∗ = {s ∈ Rn : sTx ≥ 0 ,∀x ∈ K}

Theorem 10.3.1
(1) K∗ is a closed convex cone

(2) (K∗)∗ = k

(3) (Rn
+)

∗ = Rn
+ , (Cn+1

2 )∗ = Cn+1
2 , (Sn+)∗ = Sn+, these cones are self-dual
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primal (P ) dual (D)

min cTx max bT y

Ax = b c−AT y ∈ K

x ∈ K

Theorem 10.3.2 (Weak Duality)
If x is feasible for (P) and y is feasible for (D), then cTx ≥ bT y

Proof
Let s = c−AT y ∈ K∗, then clearly c = AT y + s, have

cTx = (AT y + x)Tx

= yTAx+ sTx

= yT b+ sTx

≥ yT b = bT y

Note that sTx ≥ 0 by definition of the dual cone.

Theorem 10.3.3 (Strong Duality)
If (P) has a Slater point, i.e. ∃x ∈ int(K) : Ax = b and x∗ is optimal for (P), then ∃y∗ optimal
for (D) where cTx∗ = bT y∗

Recall that at each iteration, we can solvemin{gρ(x) : Ax = b}, where gρ = f(x)+ρ·ϕ(x), solutions
to this problem for fixed ρ are central points. Together, taking all ρ > 0, they create the central
path.

In the case of LP, (K = Rn
+), gρ = f(x) − ρ

∑
log(xi), and we can assume that there is a slater

point for any nontrivial case, so KKT conditions are sufficient for global optimality.

KKT conditions :

ATµ = ∇gρ(x)
Ax = b

Reformulate as

ATµ = ∇f(x) + ρ[− 1

x1
, · · · ,− 1

xn
]T

Ax = b
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Dual LP :

max bT y

AT y ≤ c

Is equivalent to

−min − bT y

AT y + s = c

s ≥ 0

Adding a barrier :

−min − bT y − ρ
∑

log(si) # denote this as F (y, s)

AT y + s = c

KKT conditions for modified dual

[A, I]Tγ = [∇yF (y, s),∇sF (y, a)]
T

= [−b1, · · · ,−bn,−
ρ

s1
, · · · ,− ρ

sn
]T

AT y + s = c

Reformulate as

Aγ = −b

γ = [− ρ

s1
, · · · ,− ρ

sn
]T

AT y + s = c

By identifying µ = y and γ = −x, we get

AT y = c+ ρ[− 1

x1
, · · · ,− 1

xn
]T

Ax = b

γ = [− ρ

s1
, · · · ,− ρ

sn
]T

AT y + s = c ⇒ s = ρ[− 1

x1
, · · · ,− 1

xn
]T

Primal-Dual Interior Point Method : solve the system

ATx = b

AT y + s = c

xisi = ρ, ∀i = 1, · · · , n

using Newton’s method (variant)
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Chapter 11

Introduction to Neural Networks

Machine Learning : Classification/Labelling Problem

We are given N input vectors in [0, 1]n that are already labelled into categories (the ”training set”),
can an algorithm assign ”good” (accurate) labels to more vectors?

11.1 Neural Networks (NN)

A trained NN provides a function F : Rn → Rk. If x ∈ Rn is an input vector, j∗ = argmaxj{F (x)}.
(1) Given NN, how is F (x) computed? (2) How to get an NN that is a good classifier?

For a single neuron (one neuron):

output = σ1 (a linear combination of inputs)

Typical choices for σ1(x) : R → R is

sigmoid function

σ1(x) =
1

1 + e−x
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or Rectified linear unit (ReLU) :

σ1(x) =

{
0 x ≤ 0

x x > 0

Example 11.1.1
σ1(1x+ 0), normal sigmoid function

σ1(3x+ 15), shifts points to x = 5, transition is much sharper

Definition 11.1.1 (Weight & Bias)
In σ1(w

tx+ b1), w ∈ Rk
l is the weight and b1 ∈ R1 is the bias

For a layer of neurons :

All kl neurons in layer l have the same inputs x ∈ Rnl . Together, their output is in Rkl . The output
of a layer l is σ(w · x+ b),W ∈ Rkl . For w ∈ Rkl×nl , b ∈ Rkl ,

we define σ : Rkl → Rkl as

σ(x) =

 σ1(x1)
...

σkl(xkl)



For a neural network :

l = 1 output x

l = 2 output σ(w2x+ b2)

l = 3 output σ
(
w3 · σ(w2x+ b2) + b3

)
l = 4 output σ

(
w4 · σ

(
w3 · σ(w2x+ b2) + b3

)
+ b4

)
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A deep neural networks means the number L of layers is large. A hidden layer is a layer l with
l ̸= 1 and l ̸= L

Definition 11.1.2 (Training)
Training is the process of finding wl, bl for l = 2, · · · , L that give a ”good” neural network (give a
accurate classifier)

Definition 11.1.3 (Cost Function)
A cost function is a function of the weights and biases that has a ”low” value when the neural
network gives a ”good” classification of the training data.

Typical Cost Function : Quadratic cost function

cost(w2, · · · , wL, b2, · · · , bL) = 1

N

n∑
j=1

1

2
||y(xj)− F (xj)||22

where y(xj) = ek if xj is labelled to category k

Training is to find :

min
wl,bl,l=2,··· ,L

1

N

n∑
j=1

1

2
||y(xj)− F (xj)||22

11.2 Gradient Descent For NN

Let’s define the parameter vector p ∈ Rp containing all entries of wl, bl for l = 2, · · · , L. Typically,
no line search. Instead, we find a constant step size η, called the learning rate. eta is one of
many hyperparameters (constant chosen heuristically because they work)

Consider the Training

min
wl,bl,l=2,··· ,L

1

N

n∑
j=1

1

2
||y(xj)− F (xj)||22

The gradient is

1

N

n∑
j=1

∇(
1

2
||y(xj)− F (xj)||22)

where ∇ is w.r.t. w2, b2, · · · , wL, bL
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Note L is relatively large, so consider the Stochastic Gradient Descent, the gradient is

1

|S|
∑
j∈S

∇(
1

2
||y(xj)− F (xj)||22)

where S ⊆ {1, · · · , N}

• Single-Sample (|S| = 1) or Mini-batch (|S| > 1)

• Either done with repetitions (at each iteration, choose a random S)

• Or done without repetitions : {1, · · · , N} is partitioned into disjoint subsets S1, S2, · · · and
iterations cycle through these subsets

11.3 Backpropagation

Problem : For a given j ∈ {1, · · · , N}, compute

∂

∂wl
ik

1

2
||y(xj)− F (xj)||22 ,∀l, i, k

∂

∂blik

1

2
||y(xj)− F (xj)||22 ,∀l, i, k

Let’s denote

y = y(xj)

al = output of layer l

aL = output of last layer

zl = wlal−1bl #weighted input of layer l

Thus,

al = σ(zl)

We define

δli :=
∂

∂zli

1

2
||y − al||2

Lemma 11.3.1 (Last layer)
δLi = σ′(zLi ) · (aLi − yi) # note the derivative of σ
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Proof

δLi =
∂

∂zLi

1

2
||y − aL||2

=
∂

∂aLi

1

2
||y − aL||2 · ∂a

L
i

∂zLi
(Chain Rule)

∂

∂aLi

1

2
||y − aL||2 = ∂

∂aLi

1

2

∑
k

(yk − aLk )
2

=
∑
k

∂

∂aLi

1

2
(yk − aLk )

2

= −(yi − aLi )

aLi = σ(zLi )

∂aLi
∂zLi

= σ′(zLi )

Together, get

δLi = −(yi − aLi ) · σ′(zLi )
= σ′(zLi ) · (aLi − yi)

Lemma 11.3.2 (Other smaller layer)
δli = σ′(zli)[(w

l+1)T δl+1]i

Proof

δli =
∂

∂zli

1

2
||y − al||2

=
∂

∂zli

1

2

∑
k

(yk − alk)
2

=
∑
k

∂

∂zli

1

2
(yk − alk)

2

=
∑
k

∂

∂zl+1
i

1

2
(yk − alk)

2 ·
∂zl+1

i

∂zli
(Chain Rule)

zl+1
k =

∑
s

wl+1
ks σ(z

l
s) + bl+1

k

⇒
∂zl+1

i

∂zli
= wl+1

ki σ
′(zli)

Together, get

δli =
∑
k

δl+1
k · wl+1

ki σ
′(zli)
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Lemma 11.3.3
∂
∂bli

1
2 ||y − aL||2 = δli

Proof

∂

∂bli

1

2
||y − aL||2 = ∂

∂zli

1

2
||y − aL||2︸ ︷︷ ︸
δli

·∂z
l
i

∂bli
(Chain Rule)

zli =
(
wl(σ(zl−1)

)
i
+ bli

∂zli
∂bli

= 1

So
∂

∂bli

1

2
||y − aL||2 = δli

Lemma 11.3.4
∂

∂wsk

1
2 ||y − aL||22 = δls · al−1

k

Proof

∂

∂wsk

1

2
||y − aL||22 =

∑
i

∂

∂wsk

1

2
(yi − aLi )

2

=
∑
i

∂

∂zli

1

2
(yi − aLi )

2︸ ︷︷ ︸
δli

· ∂z
l
i

∂wsk

zli =
(
wlσ(zl+1)

)
i
+ bli

= [
∑
k

wl
ik σ(z

l−1
k︸ ︷︷ ︸

al−1
k

] + bli

= [
∑
k

wl
ika

l−1] + bli

So
∂zli
∂wsk

=

{
0, ∀s ̸= i

al−1
k , s = i

∂

∂wsk

1

2
||y − aL||22 =

∑
i

δli ·
∂zli
∂wsk

= δlsa
l−1
k

11.4 Summary

(1) δLi = σ′(zLi ) · (aLi − yi)

(2) δli = σ′(zli)[(w
l+1)T · δl+1]i, ∀l = 2, · · · , L− 1

(3) ∂
∂bi

1
2 ||y − aL||2 = δli
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(4) ∂
∂wsk

1
2 ||y − aL||2 = δls · al+1

k
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Chapter 12

Course Summary for Final

Chapter 2 : psd/pd matrices

Chapter 3 : Convexity, Strong Convexity (Chapter 7)

Chapter 4 : Constrained Optimization, show a function is coercive

∇f(x) = 0,∇2f(x) p.d.⇒ x strict local min ⇒ x local min ⇒ ∇2f(x) p.s.d

Chapter 5 : Quadratic Optimization, Newton’s Method

Chapter 6 : Least Square Problem (Direct application of Chapter 5)

Chapter 7 : Descent Algorithms, Newton’s Method Convergence,

Steepest Direction(= opposite of gradient)

Chapter 8 : Trust Region Methods, Trust Region Subproblem

Chapter 9 : Constrained Optimization, KKT conditions

Chapter 10 : Constrained Optimization Algorithms, Conic Optimization, Looking for Dual

Chapter 11 : Neural Network, no proofs on final, maybe some T/F
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